import numpy as np
from itertools import product
from basiq import *
from basiq.algorithms.qubo import *
from basiq.algorithms.vqe import VQE
from basiq.algorithms.circuit_builder import TwoLocalCircuit
from basiq.visualization.circuit_visualization import draw_circuit
from scipy.optimize import minimize as scipy_minimize
from noisyopt import minimizeCompass
from noisyopt import minimizeSPSA
The traveling salesman problem for a graph $G = (V, E)$, where each edge $uv$ in the graph has a weight $W_{uv}$ associated to it, is to find the Hamiltonian cycle such that the sum of the weights of each edge in the cycle is minimized. The decision problem (does a path of total weight ≤ W exist?) is NP-complete.
To solve this problem we define binary variable $x_{ij}= \left\{ \begin{array}{ll} 1 & \text{if depot $i$ is at location $j$}\\ 0 & \text{otherwise} \end{array} \right.$
A path can then be expressed as a matrix: $X=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ that represents a path $0 \rightarrow 2 \rightarrow 1$.
The total length of the path is: $$D(x) = B\cdot \sum_{j=0}^{N - 1} \sum_{i,k=0}^{N - 1} w_{ik} x_{i,j} x_{k, j+1}$$
Attempting to minimize the function above will most likely give us a wrong solution, where we could be at two depots at the same location, or not even visit all depots. To solve this issue, we will add the constraints above as additional penalties to the distance function D(x). This can be achieved constructing a cost function C(x) as below: $$C(x) = A\cdot\sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}+A\cdot\sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}+ D(x)$$
$B$ shall be small enough that it is never favorable to violate the constraints; one such constraint is $0 < B \cdot \text{max}(W_{uv}) < A$ (we assume in complete generality $W_{uv} ≥ 0$ for each $(uv) ∈ E$, and $B=1$). If the traveling salesman does not have to return to his starting position, we can restrict the sum over $j$ from 0 to N−2 in $D(x)$ ( we dont care if last position and first position are connected). We can optimize the Hamiltonian as we may fix node 1 to appear first in the cycle.
To solve this problem, we use a Hamiltonian $H = H_A + H_B$ , with $H_A$ the Hamiltonian given for the directed (or undirected) Hamiltonian cycles problem.
$H_A = A\cdot\sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}+A\cdot\sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}$
The actual objective to minimize $H_B = B\cdot\sum_{j=0}^{N - 1} \sum_{i,k=0}^{N - 1} w_{ik} x_{i,j} x_{k, j+1}$ adds the weights for each edge.
We can use the Ising Model as a formulation.
Given graph $𝐺 = (𝑉, 𝐸)$ with edge weights $𝑊_{uv}$, find the hamiltonian cycle with minimum sum of edge weights:
$H=\alpha \sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}+\alpha \sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}+\beta \sum_{j=0}^{N - 1} \sum_{i,k=0}^{N - 1} w_{ik} x_{i,j} x_{k, j+1}$
$i$: number of depot
$j$: position in the cycle
$x_{ij} = 1$ if depot $i$ is located at position $j$ in the cycle, else 0
$w_{ik}$: weight on edge $(ik)$
$\alpha$: the scaling for the constraints (A1), (A2)
$\beta$: the scaling for the objective (B)
The qubo function consists of three terms, 2 terms in $H_A$ and one quadratic term in $H_B$:
$H_A = \alpha \sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}+\alpha \sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}$
The first term $\sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}$ is to model that each location in the cycle must be assigned to one unique depot (A1). As we will minimize the qubo function, we would like to get the lowest possible value, which is 0. This is true if $\left(\sum_{i=0}^{N-1} x_{i j}-1\right)=0$. Therefore $\sum_{i=0}^{N-1} x_{i j}=1$, this implies $x_{i j}=1$ for exactly one pair $(i, j)$ and 0 otherwise.
The second term $\sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}$ ensures that each depot is exactly on one location in the cycle (A2) (analog to first term).
Note that $(\sum_i x_{ij} - 1)^2 = - \sum_i x_{ij} + 2 \sum_{i > k} x_{ij} x_{kj} + const$
The third term $H_B = \sum_{j=0}^{N - 1} \sum_{i,k=0}^{N - 1} w_{ik} x_{i,j} x_{k, j+1}, \beta=1$ adds the weights for each edge $(ik)$ (B).
Now, we can map the problem of minimizing $C(x)$, to a quantum analogue by promoting the boolean variable $x_{ij}$ to a quantum operator as: $x_{ij} \rightarrow \frac{1-\hat{Z}_{ij}}{2} \text{, with }\hat{Z}_{ij}=I\bigotimes I\bigotimes...\bigotimes\sigma^z_{ij}\bigotimes...\bigotimes I$
With this notation then if qubit $i,j$ is in state $|1⟩$ the solution is at location $j$ with depot $i$. Using this operator we can transform the cost function $C(x)$ into a Hamiltonian for the system of $n^2$ qubits.
# Let's define the weights matrix
alpha1 = 10
alpha2 = 10
w = np.array([
[0, 1, 9, 1],
[1, 0, 1, 9],
[9, 1, 0, 1],
[1, 9, 1, 0],
])
#alpha1 = 100
#alpha2 = 100
#w = np.array([
# [0, 48, 91, 33],
# [48, 0, 63, 71],
# [91, 63, 0, 92],
# [33, 71, 92, 0],
#])
Use qss.algorithms.qubo to implement the QUBO function with our SDK.
N=4
quad_prog = QuadraticFunction("TSP")
# create variables x_ij
for j in range(N):
for i in range(N):
quad_prog.add_variable(0, 1, VarType.BINARY, 'x{}{}'.format(j, i))
quadratic = {}
linear = {}
Let's implement $H_B=\beta \sum_{j=0}^{N - 1} \sum_{i,k=0}^{N - 1} w_{ik} x_{i,j} x_{k, j+1}, \beta=1$
for j in range(N):
for i in range(N):
for k in range(N):
quadratic[('x{}{}'.format(i, j), 'x{}{}'.format(k, (j+1)%N))] = w[i, k]
print(quadratic)
print()
quad_prog.minimize(quadratic=quadratic)
print(quad_prog.to_string())
#hamiltonian, offset = quad_prog.to_ising()
{('x00', 'x01'): 0, ('x00', 'x11'): 1, ('x00', 'x21'): 9, ('x00', 'x31'): 1, ('x10', 'x01'): 1, ('x10', 'x11'): 0, ('x10', 'x21'): 1, ('x10', 'x31'): 9, ('x20', 'x01'): 9, ('x20', 'x11'): 1, ('x20', 'x21'): 0, ('x20', 'x31'): 1, ('x30', 'x01'): 1, ('x30', 'x11'): 9, ('x30', 'x21'): 1, ('x30', 'x31'): 0, ('x01', 'x02'): 0, ('x01', 'x12'): 1, ('x01', 'x22'): 9, ('x01', 'x32'): 1, ('x11', 'x02'): 1, ('x11', 'x12'): 0, ('x11', 'x22'): 1, ('x11', 'x32'): 9, ('x21', 'x02'): 9, ('x21', 'x12'): 1, ('x21', 'x22'): 0, ('x21', 'x32'): 1, ('x31', 'x02'): 1, ('x31', 'x12'): 9, ('x31', 'x22'): 1, ('x31', 'x32'): 0, ('x02', 'x03'): 0, ('x02', 'x13'): 1, ('x02', 'x23'): 9, ('x02', 'x33'): 1, ('x12', 'x03'): 1, ('x12', 'x13'): 0, ('x12', 'x23'): 1, ('x12', 'x33'): 9, ('x22', 'x03'): 9, ('x22', 'x13'): 1, ('x22', 'x23'): 0, ('x22', 'x33'): 1, ('x32', 'x03'): 1, ('x32', 'x13'): 9, ('x32', 'x23'): 1, ('x32', 'x33'): 0, ('x03', 'x00'): 0, ('x03', 'x10'): 1, ('x03', 'x20'): 9, ('x03', 'x30'): 1, ('x13', 'x00'): 1, ('x13', 'x10'): 0, ('x13', 'x20'): 1, ('x13', 'x30'): 9, ('x23', 'x00'): 9, ('x23', 'x10'): 1, ('x23', 'x20'): 0, ('x23', 'x30'): 1, ('x33', 'x00'): 1, ('x33', 'x10'): 9, ('x33', 'x20'): 1, ('x33', 'x30'): 0} Quadratic function TSP: variable 1: x00 BINARY bound:[0,1] variable 2: x01 BINARY bound:[0,1] variable 3: x02 BINARY bound:[0,1] variable 4: x03 BINARY bound:[0,1] variable 5: x10 BINARY bound:[0,1] variable 6: x11 BINARY bound:[0,1] variable 7: x12 BINARY bound:[0,1] variable 8: x13 BINARY bound:[0,1] variable 9: x20 BINARY bound:[0,1] variable 10: x21 BINARY bound:[0,1] variable 11: x22 BINARY bound:[0,1] variable 12: x23 BINARY bound:[0,1] variable 13: x30 BINARY bound:[0,1] variable 14: x31 BINARY bound:[0,1] variable 15: x32 BINARY bound:[0,1] variable 16: x33 BINARY bound:[0,1] objective: +1(x00*x11)+1(x00*x13)+9(x00*x21)+9(x00*x23)+1(x00*x31)+1(x00*x33)+1(x01*x10)+1(x01*x12)+9(x01*x20)+9(x01*x22)+1(x01*x30)+1(x01*x32)+1(x02*x11)+1(x02*x13)+9(x02*x21)+9(x02*x23)+1(x02*x31)+1(x02*x33)+1(x03*x10)+1(x03*x12)+9(x03*x20)+9(x03*x22)+1(x03*x30)+1(x03*x32)+1(x10*x21)+1(x10*x23)+9(x10*x31)+9(x10*x33)+1(x11*x20)+1(x11*x22)+9(x11*x30)+9(x11*x32)+1(x12*x21)+1(x12*x23)+9(x12*x31)+9(x12*x33)+1(x13*x20)+1(x13*x22)+9(x13*x30)+9(x13*x32)+1(x20*x31)+1(x20*x33)+1(x21*x30)+1(x21*x32)+1(x22*x31)+1(x22*x33)+1(x23*x30)+1(x23*x32) sense: ObjectiveSense.MINIMIZE
In the next step we implement $H_A=\alpha_1 \sum_{j=0}^{N-1}\left(\sum_{i=0}^{N-1} x_{i j}-1\right)^{2}+\alpha_2 \sum_{i=0}^{N-1}\left(\sum_{j=0}^{N-1} x_{i j}-1\right)^{2}$.
Note that $(\sum_i x_{ij} - 1)^2 = - \sum_i x_{ij} + 2 \sum_{i > k} x_{ij} x_{kj} + const$
$\alpha$ and $\beta$ must be balanced. If $\alpha$ is too big, the optimizer will try to minimize the contraints and forget about the cost objective $H_B$. If $\alpha$ is too small, then the optimizer will find solutions that violate constraints (A1) or (A2).
linear = {}
for j in range(N):
for i in range(N):
linear['x{}{}'.format(i, j%N)] = linear.get('x{}{}'.format(i, j%N), 0) - alpha1
for k in range(i + 1, N):
quadratic[('x{}{}'.format(i, j%N), 'x{}{}'.format(k, j%N))] = quadratic.get(
('x{}{}'.format(i, j%N), 'x{}{}'.format(k, j%N)), 0) + 2*alpha1
for i in range(N):
for j in range(N):
linear['x{}{}'.format(i, j%N)] = linear.get('x{}{}'.format(i, j%N), 0) - alpha2
for k in range(j + 1, N): # N+1
quadratic[('x{}{}'.format(i, j%N), 'x{}{}'.format(i, k%N))] = quadratic.get(
('x{}{}'.format(i, j%N), 'x{}{}'.format(i, k%N)), 0)+ 2*alpha2
# Q[4*i + (j % 4), 4*i + (k % 4)] += 2*fine2
print("linear:", linear)
print("quadratic:", quadratic)
quad_prog.minimize(linear=linear, quadratic=quadratic)
#quad_prog.minimize(linear=linear)
print()
print(quad_prog.to_string())
linear: {'x00': -20, 'x10': -20, 'x20': -20, 'x30': -20, 'x01': -20, 'x11': -20, 'x21': -20, 'x31': -20, 'x02': -20, 'x12': -20, 'x22': -20, 'x32': -20, 'x03': -20, 'x13': -20, 'x23': -20, 'x33': -20} quadratic: {('x00', 'x01'): 20, ('x00', 'x11'): 1, ('x00', 'x21'): 9, ('x00', 'x31'): 1, ('x10', 'x01'): 1, ('x10', 'x11'): 20, ('x10', 'x21'): 1, ('x10', 'x31'): 9, ('x20', 'x01'): 9, ('x20', 'x11'): 1, ('x20', 'x21'): 20, ('x20', 'x31'): 1, ('x30', 'x01'): 1, ('x30', 'x11'): 9, ('x30', 'x21'): 1, ('x30', 'x31'): 20, ('x01', 'x02'): 20, ('x01', 'x12'): 1, ('x01', 'x22'): 9, ('x01', 'x32'): 1, ('x11', 'x02'): 1, ('x11', 'x12'): 20, ('x11', 'x22'): 1, ('x11', 'x32'): 9, ('x21', 'x02'): 9, ('x21', 'x12'): 1, ('x21', 'x22'): 20, ('x21', 'x32'): 1, ('x31', 'x02'): 1, ('x31', 'x12'): 9, ('x31', 'x22'): 1, ('x31', 'x32'): 20, ('x02', 'x03'): 20, ('x02', 'x13'): 1, ('x02', 'x23'): 9, ('x02', 'x33'): 1, ('x12', 'x03'): 1, ('x12', 'x13'): 20, ('x12', 'x23'): 1, ('x12', 'x33'): 9, ('x22', 'x03'): 9, ('x22', 'x13'): 1, ('x22', 'x23'): 20, ('x22', 'x33'): 1, ('x32', 'x03'): 1, ('x32', 'x13'): 9, ('x32', 'x23'): 1, ('x32', 'x33'): 20, ('x03', 'x00'): 0, ('x03', 'x10'): 1, ('x03', 'x20'): 9, ('x03', 'x30'): 1, ('x13', 'x00'): 1, ('x13', 'x10'): 0, ('x13', 'x20'): 1, ('x13', 'x30'): 9, ('x23', 'x00'): 9, ('x23', 'x10'): 1, ('x23', 'x20'): 0, ('x23', 'x30'): 1, ('x33', 'x00'): 1, ('x33', 'x10'): 9, ('x33', 'x20'): 1, ('x33', 'x30'): 0, ('x00', 'x10'): 20, ('x00', 'x20'): 20, ('x00', 'x30'): 20, ('x10', 'x20'): 20, ('x10', 'x30'): 20, ('x20', 'x30'): 20, ('x01', 'x11'): 20, ('x01', 'x21'): 20, ('x01', 'x31'): 20, ('x11', 'x21'): 20, ('x11', 'x31'): 20, ('x21', 'x31'): 20, ('x02', 'x12'): 20, ('x02', 'x22'): 20, ('x02', 'x32'): 20, ('x12', 'x22'): 20, ('x12', 'x32'): 20, ('x22', 'x32'): 20, ('x03', 'x13'): 20, ('x03', 'x23'): 20, ('x03', 'x33'): 20, ('x13', 'x23'): 20, ('x13', 'x33'): 20, ('x23', 'x33'): 20, ('x00', 'x02'): 20, ('x00', 'x03'): 20, ('x01', 'x03'): 20, ('x10', 'x12'): 20, ('x10', 'x13'): 20, ('x11', 'x13'): 20, ('x20', 'x22'): 20, ('x20', 'x23'): 20, ('x21', 'x23'): 20, ('x30', 'x32'): 20, ('x30', 'x33'): 20, ('x31', 'x33'): 20} Quadratic function TSP: variable 1: x00 BINARY bound:[0,1] variable 2: x01 BINARY bound:[0,1] variable 3: x02 BINARY bound:[0,1] variable 4: x03 BINARY bound:[0,1] variable 5: x10 BINARY bound:[0,1] variable 6: x11 BINARY bound:[0,1] variable 7: x12 BINARY bound:[0,1] variable 8: x13 BINARY bound:[0,1] variable 9: x20 BINARY bound:[0,1] variable 10: x21 BINARY bound:[0,1] variable 11: x22 BINARY bound:[0,1] variable 12: x23 BINARY bound:[0,1] variable 13: x30 BINARY bound:[0,1] variable 14: x31 BINARY bound:[0,1] variable 15: x32 BINARY bound:[0,1] variable 16: x33 BINARY bound:[0,1] objective: +20(x00*x01)+20(x00*x02)+20(x00*x03)+20(x00*x10)+1(x00*x11)+1(x00*x13)+20(x00*x20)+9(x00*x21)+9(x00*x23)+20(x00*x30)+1(x00*x31)+1(x00*x33)+20(x01*x02)+20(x01*x03)+1(x01*x10)+20(x01*x11)+1(x01*x12)+9(x01*x20)+20(x01*x21)+9(x01*x22)+1(x01*x30)+20(x01*x31)+1(x01*x32)+20(x02*x03)+1(x02*x11)+20(x02*x12)+1(x02*x13)+9(x02*x21)+20(x02*x22)+9(x02*x23)+1(x02*x31)+20(x02*x32)+1(x02*x33)+1(x03*x10)+1(x03*x12)+20(x03*x13)+9(x03*x20)+9(x03*x22)+20(x03*x23)+1(x03*x30)+1(x03*x32)+20(x03*x33)+20(x10*x11)+20(x10*x12)+20(x10*x13)+20(x10*x20)+1(x10*x21)+1(x10*x23)+20(x10*x30)+9(x10*x31)+9(x10*x33)+20(x11*x12)+20(x11*x13)+1(x11*x20)+20(x11*x21)+1(x11*x22)+9(x11*x30)+20(x11*x31)+9(x11*x32)+20(x12*x13)+1(x12*x21)+20(x12*x22)+1(x12*x23)+9(x12*x31)+20(x12*x32)+9(x12*x33)+1(x13*x20)+1(x13*x22)+20(x13*x23)+9(x13*x30)+9(x13*x32)+20(x13*x33)+20(x20*x21)+20(x20*x22)+20(x20*x23)+20(x20*x30)+1(x20*x31)+1(x20*x33)+20(x21*x22)+20(x21*x23)+1(x21*x30)+20(x21*x31)+1(x21*x32)+20(x22*x23)+1(x22*x31)+20(x22*x32)+1(x22*x33)+1(x23*x30)+1(x23*x32)+20(x23*x33)+20(x30*x31)+20(x30*x32)+20(x30*x33)+20(x31*x32)+20(x31*x33)+20(x32*x33)-20x00-20x10-20x20-20x30-20x01-20x11-20x21-20x31-20x02-20x12-20x22-20x32-20x03-20x13-20x23-20x33 sense: ObjectiveSense.MINIMIZE
Let's pose a constraint that the agent must start from the 0-th point and goes to the first one: $-10(x_{00} + x_{11})$
linear['x00'] -= alpha1
linear['x11'] -= alpha1
print("linear:", linear)
print("quadratic:", quadratic)
quad_prog.minimize(linear=linear, quadratic=quadratic)
print()
print(quad_prog.to_string())
linear: {'x00': -30, 'x10': -20, 'x20': -20, 'x30': -20, 'x01': -20, 'x11': -30, 'x21': -20, 'x31': -20, 'x02': -20, 'x12': -20, 'x22': -20, 'x32': -20, 'x03': -20, 'x13': -20, 'x23': -20, 'x33': -20} quadratic: {('x00', 'x01'): 20, ('x00', 'x11'): 1, ('x00', 'x21'): 9, ('x00', 'x31'): 1, ('x10', 'x01'): 1, ('x10', 'x11'): 20, ('x10', 'x21'): 1, ('x10', 'x31'): 9, ('x20', 'x01'): 9, ('x20', 'x11'): 1, ('x20', 'x21'): 20, ('x20', 'x31'): 1, ('x30', 'x01'): 1, ('x30', 'x11'): 9, ('x30', 'x21'): 1, ('x30', 'x31'): 20, ('x01', 'x02'): 20, ('x01', 'x12'): 1, ('x01', 'x22'): 9, ('x01', 'x32'): 1, ('x11', 'x02'): 1, ('x11', 'x12'): 20, ('x11', 'x22'): 1, ('x11', 'x32'): 9, ('x21', 'x02'): 9, ('x21', 'x12'): 1, ('x21', 'x22'): 20, ('x21', 'x32'): 1, ('x31', 'x02'): 1, ('x31', 'x12'): 9, ('x31', 'x22'): 1, ('x31', 'x32'): 20, ('x02', 'x03'): 20, ('x02', 'x13'): 1, ('x02', 'x23'): 9, ('x02', 'x33'): 1, ('x12', 'x03'): 1, ('x12', 'x13'): 20, ('x12', 'x23'): 1, ('x12', 'x33'): 9, ('x22', 'x03'): 9, ('x22', 'x13'): 1, ('x22', 'x23'): 20, ('x22', 'x33'): 1, ('x32', 'x03'): 1, ('x32', 'x13'): 9, ('x32', 'x23'): 1, ('x32', 'x33'): 20, ('x03', 'x00'): 0, ('x03', 'x10'): 1, ('x03', 'x20'): 9, ('x03', 'x30'): 1, ('x13', 'x00'): 1, ('x13', 'x10'): 0, ('x13', 'x20'): 1, ('x13', 'x30'): 9, ('x23', 'x00'): 9, ('x23', 'x10'): 1, ('x23', 'x20'): 0, ('x23', 'x30'): 1, ('x33', 'x00'): 1, ('x33', 'x10'): 9, ('x33', 'x20'): 1, ('x33', 'x30'): 0, ('x00', 'x10'): 20, ('x00', 'x20'): 20, ('x00', 'x30'): 20, ('x10', 'x20'): 20, ('x10', 'x30'): 20, ('x20', 'x30'): 20, ('x01', 'x11'): 20, ('x01', 'x21'): 20, ('x01', 'x31'): 20, ('x11', 'x21'): 20, ('x11', 'x31'): 20, ('x21', 'x31'): 20, ('x02', 'x12'): 20, ('x02', 'x22'): 20, ('x02', 'x32'): 20, ('x12', 'x22'): 20, ('x12', 'x32'): 20, ('x22', 'x32'): 20, ('x03', 'x13'): 20, ('x03', 'x23'): 20, ('x03', 'x33'): 20, ('x13', 'x23'): 20, ('x13', 'x33'): 20, ('x23', 'x33'): 20, ('x00', 'x02'): 20, ('x00', 'x03'): 20, ('x01', 'x03'): 20, ('x10', 'x12'): 20, ('x10', 'x13'): 20, ('x11', 'x13'): 20, ('x20', 'x22'): 20, ('x20', 'x23'): 20, ('x21', 'x23'): 20, ('x30', 'x32'): 20, ('x30', 'x33'): 20, ('x31', 'x33'): 20} Quadratic function TSP: variable 1: x00 BINARY bound:[0,1] variable 2: x01 BINARY bound:[0,1] variable 3: x02 BINARY bound:[0,1] variable 4: x03 BINARY bound:[0,1] variable 5: x10 BINARY bound:[0,1] variable 6: x11 BINARY bound:[0,1] variable 7: x12 BINARY bound:[0,1] variable 8: x13 BINARY bound:[0,1] variable 9: x20 BINARY bound:[0,1] variable 10: x21 BINARY bound:[0,1] variable 11: x22 BINARY bound:[0,1] variable 12: x23 BINARY bound:[0,1] variable 13: x30 BINARY bound:[0,1] variable 14: x31 BINARY bound:[0,1] variable 15: x32 BINARY bound:[0,1] variable 16: x33 BINARY bound:[0,1] objective: +20(x00*x01)+20(x00*x02)+20(x00*x03)+20(x00*x10)+1(x00*x11)+1(x00*x13)+20(x00*x20)+9(x00*x21)+9(x00*x23)+20(x00*x30)+1(x00*x31)+1(x00*x33)+20(x01*x02)+20(x01*x03)+1(x01*x10)+20(x01*x11)+1(x01*x12)+9(x01*x20)+20(x01*x21)+9(x01*x22)+1(x01*x30)+20(x01*x31)+1(x01*x32)+20(x02*x03)+1(x02*x11)+20(x02*x12)+1(x02*x13)+9(x02*x21)+20(x02*x22)+9(x02*x23)+1(x02*x31)+20(x02*x32)+1(x02*x33)+1(x03*x10)+1(x03*x12)+20(x03*x13)+9(x03*x20)+9(x03*x22)+20(x03*x23)+1(x03*x30)+1(x03*x32)+20(x03*x33)+20(x10*x11)+20(x10*x12)+20(x10*x13)+20(x10*x20)+1(x10*x21)+1(x10*x23)+20(x10*x30)+9(x10*x31)+9(x10*x33)+20(x11*x12)+20(x11*x13)+1(x11*x20)+20(x11*x21)+1(x11*x22)+9(x11*x30)+20(x11*x31)+9(x11*x32)+20(x12*x13)+1(x12*x21)+20(x12*x22)+1(x12*x23)+9(x12*x31)+20(x12*x32)+9(x12*x33)+1(x13*x20)+1(x13*x22)+20(x13*x23)+9(x13*x30)+9(x13*x32)+20(x13*x33)+20(x20*x21)+20(x20*x22)+20(x20*x23)+20(x20*x30)+1(x20*x31)+1(x20*x33)+20(x21*x22)+20(x21*x23)+1(x21*x30)+20(x21*x31)+1(x21*x32)+20(x22*x23)+1(x22*x31)+20(x22*x32)+1(x22*x33)+1(x23*x30)+1(x23*x32)+20(x23*x33)+20(x30*x31)+20(x30*x32)+20(x30*x33)+20(x31*x32)+20(x31*x33)+20(x32*x33)-30x00-20x10-20x20-20x30-20x01-30x11-20x21-20x31-20x02-20x12-20x22-20x32-20x03-20x13-20x23-20x33 sense: ObjectiveSense.MINIMIZE
Now we create our Hamiltonian opertator, that we will use to solve the problem by finding its lowest eigenvalue (energy state)
hamiltonian, offset = quad_prog.to_ising()
print("offset: {}\noperator: {}".format(offset, hamiltonian.print_details()))
offset: 114.0 operator: WeightedPauliOperators: -20.500000+0.000000j * 'ZIIIIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIZIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIZIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIZIII' -25.500000+0.000000j * 'IZIIIIIIIIIIIIII' -20.500000+0.000000j * 'IIIIIZIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIZIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIZII' -25.500000+0.000000j * 'IIZIIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIZIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIZIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIIZI' -25.500000+0.000000j * 'IIIZIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIZIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIZIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIIIZ' +5.000000+0.000000j * 'ZZIIIIIIIIIIIIII' +5.000000+0.000000j * 'ZIZIIIIIIIIIIIII' +5.000000+0.000000j * 'ZIIZIIIIIIIIIIII' +5.000000+0.000000j * 'ZIIIZIIIIIIIIIII' +0.250000+0.000000j * 'ZIIIIZIIIIIIIIII' +0.250000+0.000000j * 'ZIIIIIIZIIIIIIII' +5.000000+0.000000j * 'ZIIIIIIIZIIIIIII' +2.250000+0.000000j * 'ZIIIIIIIIZIIIIII' +2.250000+0.000000j * 'ZIIIIIIIIIIZIIII' +5.000000+0.000000j * 'ZIIIIIIIIIIIZIII' +0.250000+0.000000j * 'ZIIIIIIIIIIIIZII' +0.250000+0.000000j * 'ZIIIIIIIIIIIIIIZ' +5.000000+0.000000j * 'IZZIIIIIIIIIIIII' +5.000000+0.000000j * 'IZIZIIIIIIIIIIII' +0.250000+0.000000j * 'IZIIZIIIIIIIIIII' +5.000000+0.000000j * 'IZIIIZIIIIIIIIII' +0.250000+0.000000j * 'IZIIIIZIIIIIIIII' +2.250000+0.000000j * 'IZIIIIIIZIIIIIII' +5.000000+0.000000j * 'IZIIIIIIIZIIIIII' +2.250000+0.000000j * 'IZIIIIIIIIZIIIII' +0.250000+0.000000j * 'IZIIIIIIIIIIZIII' +5.000000+0.000000j * 'IZIIIIIIIIIIIZII' +0.250000+0.000000j * 'IZIIIIIIIIIIIIZI' +5.000000+0.000000j * 'IIZZIIIIIIIIIIII' +0.250000+0.000000j * 'IIZIIZIIIIIIIIII' +5.000000+0.000000j * 'IIZIIIZIIIIIIIII' +0.250000+0.000000j * 'IIZIIIIZIIIIIIII' +2.250000+0.000000j * 'IIZIIIIIIZIIIIII' +5.000000+0.000000j * 'IIZIIIIIIIZIIIII' +2.250000+0.000000j * 'IIZIIIIIIIIZIIII' +0.250000+0.000000j * 'IIZIIIIIIIIIIZII' +5.000000+0.000000j * 'IIZIIIIIIIIIIIZI' +0.250000+0.000000j * 'IIZIIIIIIIIIIIIZ' +0.250000+0.000000j * 'IIIZZIIIIIIIIIII' +0.250000+0.000000j * 'IIIZIIZIIIIIIIII' +5.000000+0.000000j * 'IIIZIIIZIIIIIIII' +2.250000+0.000000j * 'IIIZIIIIZIIIIIII' +2.250000+0.000000j * 'IIIZIIIIIIZIIIII' +5.000000+0.000000j * 'IIIZIIIIIIIZIIII' +0.250000+0.000000j * 'IIIZIIIIIIIIZIII' +0.250000+0.000000j * 'IIIZIIIIIIIIIIZI' +5.000000+0.000000j * 'IIIZIIIIIIIIIIIZ' +5.000000+0.000000j * 'IIIIZZIIIIIIIIII' +5.000000+0.000000j * 'IIIIZIZIIIIIIIII' +5.000000+0.000000j * 'IIIIZIIZIIIIIIII' +5.000000+0.000000j * 'IIIIZIIIZIIIIIII' +0.250000+0.000000j * 'IIIIZIIIIZIIIIII' +0.250000+0.000000j * 'IIIIZIIIIIIZIIII' +5.000000+0.000000j * 'IIIIZIIIIIIIZIII' +2.250000+0.000000j * 'IIIIZIIIIIIIIZII' +2.250000+0.000000j * 'IIIIZIIIIIIIIIIZ' +5.000000+0.000000j * 'IIIIIZZIIIIIIIII' +5.000000+0.000000j * 'IIIIIZIZIIIIIIII' +0.250000+0.000000j * 'IIIIIZIIZIIIIIII' +5.000000+0.000000j * 'IIIIIZIIIZIIIIII' +0.250000+0.000000j * 'IIIIIZIIIIZIIIII' +2.250000+0.000000j * 'IIIIIZIIIIIIZIII' +5.000000+0.000000j * 'IIIIIZIIIIIIIZII' +2.250000+0.000000j * 'IIIIIZIIIIIIIIZI' +5.000000+0.000000j * 'IIIIIIZZIIIIIIII' +0.250000+0.000000j * 'IIIIIIZIIZIIIIII' +5.000000+0.000000j * 'IIIIIIZIIIZIIIII' +0.250000+0.000000j * 'IIIIIIZIIIIZIIII' +2.250000+0.000000j * 'IIIIIIZIIIIIIZII' +5.000000+0.000000j * 'IIIIIIZIIIIIIIZI' +2.250000+0.000000j * 'IIIIIIZIIIIIIIIZ' +0.250000+0.000000j * 'IIIIIIIZZIIIIIII' +0.250000+0.000000j * 'IIIIIIIZIIZIIIII' +5.000000+0.000000j * 'IIIIIIIZIIIZIIII' +2.250000+0.000000j * 'IIIIIIIZIIIIZIII' +2.250000+0.000000j * 'IIIIIIIZIIIIIIZI' +5.000000+0.000000j * 'IIIIIIIZIIIIIIIZ' +5.000000+0.000000j * 'IIIIIIIIZZIIIIII' +5.000000+0.000000j * 'IIIIIIIIZIZIIIII' +5.000000+0.000000j * 'IIIIIIIIZIIZIIII' +5.000000+0.000000j * 'IIIIIIIIZIIIZIII' +0.250000+0.000000j * 'IIIIIIIIZIIIIZII' +0.250000+0.000000j * 'IIIIIIIIZIIIIIIZ' +5.000000+0.000000j * 'IIIIIIIIIZZIIIII' +5.000000+0.000000j * 'IIIIIIIIIZIZIIII' +0.250000+0.000000j * 'IIIIIIIIIZIIZIII' +5.000000+0.000000j * 'IIIIIIIIIZIIIZII' +0.250000+0.000000j * 'IIIIIIIIIZIIIIZI' +5.000000+0.000000j * 'IIIIIIIIIIZZIIII' +0.250000+0.000000j * 'IIIIIIIIIIZIIZII' +5.000000+0.000000j * 'IIIIIIIIIIZIIIZI' +0.250000+0.000000j * 'IIIIIIIIIIZIIIIZ' +0.250000+0.000000j * 'IIIIIIIIIIIZZIII' +0.250000+0.000000j * 'IIIIIIIIIIIZIIZI' +5.000000+0.000000j * 'IIIIIIIIIIIZIIIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIZZII' +5.000000+0.000000j * 'IIIIIIIIIIIIZIZI' +5.000000+0.000000j * 'IIIIIIIIIIIIZIIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIIZZI' +5.000000+0.000000j * 'IIIIIIIIIIIIIZIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIIIZZ'
In the next step we use the VQE Variational Quantum Eigensolver algorithm to adapt the angles in the ansatz circuit so that the minimal eigenvalue of the hamiltonain is returned. in this case we use the state vector for an exact calculation of the eigenvalues.
We choose one appropriate optimizer method, to solve the eigenvalue problem, e.g.
%%time
import random
import numpy as np
print(bq_init(silent=True))
qe = QEngine("cuqs") # 'cuqs': gpu-based simulator 'qss': cpu-based simulator (up to 48 cores)
print(hamiltonian.print_details())
n=hamiltonian.number_qbits
sample_rate = None
su2_gates=[QCircuit.ry, QCircuit.rz]
reps=2
random.seed(0)
initial_params = [(random.random() * 2 * np.pi - np.pi) for i in range(len(su2_gates)*n*(reps+1))]
#print(initial_params)
##kwargs={'tol':1e-3, 'options': {'maxiter': 1000, 'disp':True}} # defaults to BFGS or similar
##kwargs={'method': 'CG', 'tol':1e-3, 'options': {'maxiter': 1000, 'gtol': 1e-4, 'disp':True}}
##kwargs={'method': 'COBYLA', 'tol':1e-3, 'options': {'maxiter': 15000, 'disp':True}}
##kwargs={'method': 'BFGS', 'tol':1e-3, 'options': {'maxiter': 150, 'gtol':1e-4, 'disp':True}}
##kwargs={'method': 'SLSQP', 'tol':1e-3, 'options': {'maxiter': 15000, 'ftol':1e-4, 'disp':True}}
##kwargs={'method': 'Powell', 'tol':1e-3, 'options': {'maxiter': 10, 'disp':True}}
##kwargs={'method': 'TNC', 'tol':1e-3, 'options': {'maxfun': 15000, 'ftol': 1e-4, 'disp':True}}
##kwargs={'method': 'nelder-mead', 'tol':1e-3, 'options': {'maxiter': 100000, 'adaptive':True, 'fatol':1e-4, 'disp':True}}
kwargs={'method': 'SLSQP', 'tol':1e-3, 'options': {'maxiter': 15000, 'ftol':1e-4, 'disp':True}}
### Use VQE to approximate the solution
##############################################
var_form = TwoLocalCircuit(n, su2_gates, None, entanglement="cyclic", reps=reps,
insert_barriers = True, circuit_name="qubo" )
print("circuit with inital parameters:")
#print(draw_circuit(var_form.constructCircuit(initial_params)[0]))
vqe = VQE(qe, hamiltonian, var_form, initial_params)
result = vqe.run(scipy_minimize, sample_rate, optimizer_args = (), optimizer_kwargs=kwargs,
jacobian=None, trace = 1)
print("VQE solution parameters:\n", result['x'])
print("VQE eigenvalue:", result['fun'])
<basiq >[2023-07-13 17:25:16.000348][INFO] <basiq> version: 23.4.15, thread mode: 1
<basiq> version: 23.4.15, thread mode: 1 WeightedPauliOperators: -20.500000+0.000000j * 'ZIIIIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIZIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIZIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIZIII' -25.500000+0.000000j * 'IZIIIIIIIIIIIIII' -20.500000+0.000000j * 'IIIIIZIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIZIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIZII' -25.500000+0.000000j * 'IIZIIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIZIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIZIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIIZI' -25.500000+0.000000j * 'IIIZIIIIIIIIIIII' -25.500000+0.000000j * 'IIIIIIIZIIIIIIII' -25.500000+0.000000j * 'IIIIIIIIIIIZIIII' -25.500000+0.000000j * 'IIIIIIIIIIIIIIIZ' +5.000000+0.000000j * 'ZZIIIIIIIIIIIIII' +5.000000+0.000000j * 'ZIZIIIIIIIIIIIII' +5.000000+0.000000j * 'ZIIZIIIIIIIIIIII' +5.000000+0.000000j * 'ZIIIZIIIIIIIIIII' +0.250000+0.000000j * 'ZIIIIZIIIIIIIIII' +0.250000+0.000000j * 'ZIIIIIIZIIIIIIII' +5.000000+0.000000j * 'ZIIIIIIIZIIIIIII' +2.250000+0.000000j * 'ZIIIIIIIIZIIIIII' +2.250000+0.000000j * 'ZIIIIIIIIIIZIIII' +5.000000+0.000000j * 'ZIIIIIIIIIIIZIII' +0.250000+0.000000j * 'ZIIIIIIIIIIIIZII' +0.250000+0.000000j * 'ZIIIIIIIIIIIIIIZ' +5.000000+0.000000j * 'IZZIIIIIIIIIIIII' +5.000000+0.000000j * 'IZIZIIIIIIIIIIII' +0.250000+0.000000j * 'IZIIZIIIIIIIIIII' +5.000000+0.000000j * 'IZIIIZIIIIIIIIII' +0.250000+0.000000j * 'IZIIIIZIIIIIIIII' +2.250000+0.000000j * 'IZIIIIIIZIIIIIII' +5.000000+0.000000j * 'IZIIIIIIIZIIIIII' +2.250000+0.000000j * 'IZIIIIIIIIZIIIII' +0.250000+0.000000j * 'IZIIIIIIIIIIZIII' +5.000000+0.000000j * 'IZIIIIIIIIIIIZII' +0.250000+0.000000j * 'IZIIIIIIIIIIIIZI' +5.000000+0.000000j * 'IIZZIIIIIIIIIIII' +0.250000+0.000000j * 'IIZIIZIIIIIIIIII' +5.000000+0.000000j * 'IIZIIIZIIIIIIIII' +0.250000+0.000000j * 'IIZIIIIZIIIIIIII' +2.250000+0.000000j * 'IIZIIIIIIZIIIIII' +5.000000+0.000000j * 'IIZIIIIIIIZIIIII' +2.250000+0.000000j * 'IIZIIIIIIIIZIIII' +0.250000+0.000000j * 'IIZIIIIIIIIIIZII' +5.000000+0.000000j * 'IIZIIIIIIIIIIIZI' +0.250000+0.000000j * 'IIZIIIIIIIIIIIIZ' +0.250000+0.000000j * 'IIIZZIIIIIIIIIII' +0.250000+0.000000j * 'IIIZIIZIIIIIIIII' +5.000000+0.000000j * 'IIIZIIIZIIIIIIII' +2.250000+0.000000j * 'IIIZIIIIZIIIIIII' +2.250000+0.000000j * 'IIIZIIIIIIZIIIII' +5.000000+0.000000j * 'IIIZIIIIIIIZIIII' +0.250000+0.000000j * 'IIIZIIIIIIIIZIII' +0.250000+0.000000j * 'IIIZIIIIIIIIIIZI' +5.000000+0.000000j * 'IIIZIIIIIIIIIIIZ' +5.000000+0.000000j * 'IIIIZZIIIIIIIIII' +5.000000+0.000000j * 'IIIIZIZIIIIIIIII' +5.000000+0.000000j * 'IIIIZIIZIIIIIIII' +5.000000+0.000000j * 'IIIIZIIIZIIIIIII' +0.250000+0.000000j * 'IIIIZIIIIZIIIIII' +0.250000+0.000000j * 'IIIIZIIIIIIZIIII' +5.000000+0.000000j * 'IIIIZIIIIIIIZIII' +2.250000+0.000000j * 'IIIIZIIIIIIIIZII' +2.250000+0.000000j * 'IIIIZIIIIIIIIIIZ' +5.000000+0.000000j * 'IIIIIZZIIIIIIIII' +5.000000+0.000000j * 'IIIIIZIZIIIIIIII' +0.250000+0.000000j * 'IIIIIZIIZIIIIIII' +5.000000+0.000000j * 'IIIIIZIIIZIIIIII' +0.250000+0.000000j * 'IIIIIZIIIIZIIIII' +2.250000+0.000000j * 'IIIIIZIIIIIIZIII' +5.000000+0.000000j * 'IIIIIZIIIIIIIZII' +2.250000+0.000000j * 'IIIIIZIIIIIIIIZI' +5.000000+0.000000j * 'IIIIIIZZIIIIIIII' +0.250000+0.000000j * 'IIIIIIZIIZIIIIII' +5.000000+0.000000j * 'IIIIIIZIIIZIIIII' +0.250000+0.000000j * 'IIIIIIZIIIIZIIII' +2.250000+0.000000j * 'IIIIIIZIIIIIIZII' +5.000000+0.000000j * 'IIIIIIZIIIIIIIZI' +2.250000+0.000000j * 'IIIIIIZIIIIIIIIZ' +0.250000+0.000000j * 'IIIIIIIZZIIIIIII' +0.250000+0.000000j * 'IIIIIIIZIIZIIIII' +5.000000+0.000000j * 'IIIIIIIZIIIZIIII' +2.250000+0.000000j * 'IIIIIIIZIIIIZIII' +2.250000+0.000000j * 'IIIIIIIZIIIIIIZI' +5.000000+0.000000j * 'IIIIIIIZIIIIIIIZ' +5.000000+0.000000j * 'IIIIIIIIZZIIIIII' +5.000000+0.000000j * 'IIIIIIIIZIZIIIII' +5.000000+0.000000j * 'IIIIIIIIZIIZIIII' +5.000000+0.000000j * 'IIIIIIIIZIIIZIII' +0.250000+0.000000j * 'IIIIIIIIZIIIIZII' +0.250000+0.000000j * 'IIIIIIIIZIIIIIIZ' +5.000000+0.000000j * 'IIIIIIIIIZZIIIII' +5.000000+0.000000j * 'IIIIIIIIIZIZIIII' +0.250000+0.000000j * 'IIIIIIIIIZIIZIII' +5.000000+0.000000j * 'IIIIIIIIIZIIIZII' +0.250000+0.000000j * 'IIIIIIIIIZIIIIZI' +5.000000+0.000000j * 'IIIIIIIIIIZZIIII' +0.250000+0.000000j * 'IIIIIIIIIIZIIZII' +5.000000+0.000000j * 'IIIIIIIIIIZIIIZI' +0.250000+0.000000j * 'IIIIIIIIIIZIIIIZ' +0.250000+0.000000j * 'IIIIIIIIIIIZZIII' +0.250000+0.000000j * 'IIIIIIIIIIIZIIZI' +5.000000+0.000000j * 'IIIIIIIIIIIZIIIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIZZII' +5.000000+0.000000j * 'IIIIIIIIIIIIZIZI' +5.000000+0.000000j * 'IIIIIIIIIIIIZIIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIIZZI' +5.000000+0.000000j * 'IIIIIIIIIIIIIZIZ' +5.000000+0.000000j * 'IIIIIIIIIIIIIIZZ' circuit with inital parameters: VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x7fc08eb0f250>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x7fc1a3a87640>} Optimization terminated successfully (Exit mode 0) Current function value: -209.99962140939587 Iterations: 41 Function evaluations: 4038 Gradient evaluations: 41 fev:4038 E => -209.99962140939587 Finnished. VQE Total time: 33.65 s fev/s: 119.99 VQE solution parameters: [ 4.71228510e+00 3.14133371e+00 2.28957672e+00 -2.00437618e+00 -1.57196232e+00 2.04903573e-03 1.83729373e+00 3.52983688e-01 2.47822562e-01 1.87931545e+00 1.57493584e+00 1.19159568e-03 -1.57055787e+00 3.14198895e+00 -1.51733114e+00 -1.74599347e+00 1.60484213e+00 3.14097115e+00 3.07621435e+00 3.13821025e+00 -2.53266919e-03 4.21561918e-01 2.88470725e+00 -3.01598972e-03 -3.60129549e-03 -2.78983897e+00 -9.48522030e-02 4.40162992e-03 3.85497144e+00 3.14188834e+00 6.99598140e-04 2.70088495e+00 -1.57083311e+00 8.90660590e-01 1.57069580e+00 -3.22908991e+00 1.57090921e+00 -9.01261851e-01 1.57078228e+00 -2.73851274e-04 -4.71231526e+00 -2.35834523e-01 1.57136056e+00 -2.98165899e+00 -1.57105334e+00 4.54080177e+00 -1.57024750e+00 -1.16137316e-01 -1.57089293e+00 3.14230533e+00 1.57072068e+00 3.91808423e-04 -1.57103394e+00 -3.24968163e-04 -1.57082148e+00 3.14224370e+00 -1.57077028e+00 4.82114252e-05 1.57078960e+00 4.76510544e-04 1.57093070e+00 -4.62517390e-04 1.57094291e+00 1.35703068e-04 -1.63712397e-04 -3.45648245e-01 -2.49481228e-03 -7.23187631e-01 4.38005269e-01 -1.31741088e+00 -1.49708414e+00 -1.96833172e+00 -4.30417996e-03 9.84315117e-01 -1.67048784e-04 -2.57720971e+00 1.74543443e+00 2.36731121e+00 6.24945359e+00 2.15173751e+00 1.50552981e+00 2.65830078e+00 1.57357251e+00 -6.82998009e-01 1.82747095e+00 -1.40973146e+00 1.56746976e+00 2.19588271e+00 1.66556797e+00 5.64231068e-01 2.28418154e+00 5.00735481e-01 -1.57182355e+00 1.00684560e+00 4.38996828e+00 2.61971043e+00] VQE eigenvalue: -209.99962140939587 CPU times: user 33.5 s, sys: 96.5 ms, total: 33.6 s Wall time: 33.7 s
## solution
# extracting solution by executing the circuit with the circuit parameters found by VQE and measuring the qbit register
exact_result = -96
print("Exact Result:", np.real(exact_result))
print("VQE result:", result['fun']+offset)
#print("VQE solution parameters:", result['x'])
circuit, qreg = var_form.constructCircuit(result['x'])
#print(draw_circuit(circuit))
creg = circuit.declare_cbit_register("cr", n)
circuit.multi_measure(qreg, "cr")
qe = QEngine("qss")
qe.execute(circuit)
print("Solution: ")
x=[]
for i, c in enumerate(creg):
print("{} = {}".format(quad_prog.variables[i].name, c.value), end=', ')
x.append(c.value)
print("\n")
print("QUBO value: ", quad_prog.objective.evaluate(x))
Exact Result: -96 VQE result: -95.99962140939587 Solution: x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, QUBO value: -96.0
With the following test program you can compare all optimizer methods against each other:
This takes some time 4-6h for 'cuqs', 10-15h for 'qss' !
%%time
import random
import numpy as np
print(bq_init())
results = []
x_list = []
n=hamiltonian.number_qbits
kwargs=[]
kwargs.append({'tol':1e-3, 'options': {'maxiter': 1000, 'disp':True}})
kwargs.append({'method': 'CG', 'tol':1e-3, 'options': {'maxiter': 1000, 'gtol': 1e-4, 'disp':True}})
kwargs.append({'method': 'COBYLA', 'tol':1e-3, 'options': {'maxiter': 15000, 'disp':True}})
kwargs.append({'method': 'BFGS', 'tol':1e-3, 'options': {'maxiter': 150, 'gtol':1e-4, 'disp':True}})
kwargs.append({'method': 'SLSQP', 'tol':1e-3, 'options': {'maxiter': 15000, 'ftol':1e-4, 'disp':True}})
kwargs.append({'method': 'Powell', 'tol':1e-3, 'options': {'maxiter': 10, 'disp':True}})
kwargs.append({'method': 'TNC', 'tol':1e-3, 'options': {'maxfun': 15000, 'ftol': 1e-4, 'disp':True}})
kwargs.append({'method': 'nelder-mead', 'tol':1e-3, 'options': {'maxiter': 100000, 'adaptive':True, 'fatol':1e-4, 'disp':True}})
for arg in kwargs:
random.seed(0)
for i in range(10):
qe = QEngine("cuqs")
qe._create_qbit_register("qr", n)
sample_rate = None
su2_gates=[QCircuit.ry, QCircuit.rz]
reps=2
initial_params = [(random.random() * 2 * np.pi - np.pi) for i in range(len(su2_gates)*n*(reps+1))]
### Use VQE to approximate the solution
##############################################
var_form = TwoLocalCircuit(n, su2_gates, None, entanglement="cyclic", reps=reps,
insert_barriers = True, circuit_name="qubo" )
vqe = VQE(qe, hamiltonian, var_form, initial_params, None, None)
result = vqe.run(scipy_minimize, sample_rate, optimizer_args = (), optimizer_kwargs=arg,
jacobian=None, trace = 1)
print("VQE solution parameters:\n", result['x'])
print("VQE eigenvalue:", result['fun'])
## solution
results.append(result['fun']+offset)
print("VQE result:", result['fun']+offset)
circuit, qreg = var_form.constructCircuit(result['x'])
creg = circuit.declare_cbit_register("cr", n)
circuit.multi_measure(qreg, creg)
creg = qe._create_cbit_register("cr", n)
qe.execute(circuit)
print("Solution: ", i)
x=[]
for ii, c in enumerate(creg):
print("{} = {}".format(quad_prog.variables[ii].name, c.value), end=', ')
x.append(c.value)
print("\n")
x_list.append(x)
print(arg)
print(results)
print(x_list)
print()
<basiq >[2023-07-12 11:43:24.000254][INFO] <basiq> version: 23.4.15, thread mode: 1
<basiq> version: 23.4.15, thread mode: 1 VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x78b0cb89bb50>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x78b0cdfa1510>} Optimization terminated successfully. Current function value: -209.999997 Iterations: 80 Function evaluations: 9409 Gradient evaluations: 97 fev:9409 E => -209.99999710751018 Finnished. VQE Total time: 87.74 s fev/s: 107.24 VQE solution parameters: [ 1.57079088e+00 -1.35266018e-05 -1.10336238e-01 -1.60742069e+00 -5.00186594e-02 -5.07575483e-01 1.57079671e+00 3.16093608e-06 2.19260144e-06 1.46433523e+00 1.57079660e+00 -1.20703325e-06 -1.57081432e+00 3.14153232e+00 2.45832458e-01 -1.79995892e+00 3.14219447e+00 2.92410928e+00 3.14158897e+00 1.40344725e+00 -5.50569462e-05 6.61340953e-01 2.91488511e+00 9.65792576e-05 -9.22562134e-03 -3.08218686e+00 -2.19786469e-05 6.44861070e-01 3.14033484e+00 2.94235271e+00 6.24947580e-03 3.10903286e+00 -1.57079417e+00 3.25189373e+00 1.57079212e+00 -3.14158740e+00 1.57079664e+00 -2.43293033e-02 3.26330255e+00 7.61430883e-02 -3.01987567e+00 -7.61900210e-02 1.57079781e+00 -1.27298682e+00 -1.57079680e+00 2.90195219e+00 -1.57079593e+00 -1.23992176e-05 -1.57080405e+00 3.14158224e+00 1.57079239e+00 1.42396452e-06 -1.57078472e+00 -4.98755232e-05 -1.57078189e+00 3.14173135e+00 -1.57080573e+00 5.67907778e-06 1.57079524e+00 1.12523594e-05 1.57079542e+00 -1.44506676e-05 1.57079094e+00 1.28858269e-05 -4.52426724e-05 -3.45579496e-01 1.52708135e+00 -7.23088633e-01 -2.05924123e-05 -1.31730310e+00 -1.57079754e+00 -1.96833156e+00 -1.45252273e-05 9.84355988e-01 -8.17636129e-05 -2.57710958e+00 1.51549059e+00 2.36738551e+00 4.71178810e+00 2.15183482e+00 1.57079837e+00 2.65834715e+00 1.57086229e+00 -6.82959282e-01 1.79749519e+00 -1.40966167e+00 1.56157598e+00 2.19604052e+00 1.57081652e+00 5.64229373e-01 1.56954129e+00 5.00759566e-01 -1.57704210e+00 1.00679250e+00 4.71642456e+00 2.61969399e+00] VQE eigenvalue: -209.99999710751007 VQE result: -95.99999710751007 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4ea70>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e7a0>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 73 Function evaluations: 8536 Gradient evaluations: 88 fev:8536 E => -209.99999981436113 Finnished. VQE Total time: 79.45 s fev/s: 107.44 VQE solution parameters: [ 1.57079664e+00 -3.14159737e+00 -5.16113935e-02 -1.44448549e+00 1.34159760e+00 2.14786118e+00 -1.57079634e+00 3.14159088e+00 -1.63410948e+00 -1.70957840e+00 1.61963463e+00 -2.36473957e+00 1.57080776e+00 -3.14162156e+00 -1.23978854e+00 1.27146834e+00 -4.71241302e+00 1.16234239e-05 1.57079991e+00 1.24176499e-06 -6.35063463e-01 -1.00887819e+00 1.57079296e+00 1.14593849e-05 -3.75341861e-04 -2.86451522e+00 -1.57079183e+00 3.14159118e+00 -4.50427498e+00 -4.37910548e+00 3.14173750e+00 -2.90402942e+00 -1.57079546e+00 -5.12189211e-02 1.57079776e+00 3.14157191e+00 -1.57078972e+00 -1.84224731e+00 -1.57080907e+00 -1.50686209e+00 -1.57079574e+00 1.44825752e-05 -1.57078094e+00 -1.50120752e+00 -1.57078582e+00 -1.66017788e+00 -1.57080230e+00 3.39745499e+00 -1.57079819e+00 -5.54238126e-01 1.57082706e+00 2.01579411e+00 4.71241390e+00 -5.68201730e-01 1.50166377e+00 2.14860434e+00 -1.63993029e+00 2.14864984e+00 1.57077572e+00 1.35092807e+00 -1.57079289e+00 4.13112945e-07 -1.57079989e+00 -3.14159662e+00 9.05402957e-06 -5.65994722e-01 2.13092115e+00 5.41266624e-02 7.08540876e-05 -8.97469305e-01 1.43228839e+00 -1.56486147e+00 2.36351775e+00 -3.06337121e+00 6.06481276e-05 -1.03089228e+00 -1.85342913e+00 -1.37666545e+00 2.43685455e-05 2.84715375e+00 6.74248544e-06 -1.33273782e+00 -1.24922079e+00 2.80804397e+00 -1.43429052e-05 7.60797378e-01 1.57039133e+00 -7.03554033e-01 -5.59263665e-06 9.47749599e-01 -1.24497052e+00 -1.93320122e+00 -1.57093545e+00 -1.63725922e+00 1.56424418e+00 -7.62451801e-01] VQE eigenvalue: -209.9999998143612 VQE result: -95.99999981436119 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d3f0>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fd00>} Optimization terminated successfully. Current function value: -193.999999 Iterations: 63 Function evaluations: 7275 Gradient evaluations: 75 fev:7275 E => -193.9999993988201 Finnished. VQE Total time: 65.44 s fev/s: 111.18 VQE solution parameters: [ 1.57079278e+00 1.02787881e-05 4.77104755e-01 -6.06140110e-01 8.63257446e-01 -6.80240337e-03 1.57080642e+00 -3.14159400e+00 -3.14157600e+00 5.27694204e-01 -1.57079005e+00 1.60752668e-05 1.53014710e-01 5.44706648e-01 4.49253182e+00 3.14159257e+00 -1.03359296e-04 -1.41892317e+00 3.99978436e-01 3.14152086e+00 3.67110749e+00 3.14165186e+00 -3.14164738e+00 1.09269372e+00 1.78003376e+00 -3.87194132e+00 1.57080526e+00 3.14162575e+00 4.83403066e-06 6.84724551e-01 -1.57080648e+00 -3.14160600e+00 1.57080329e+00 -3.06259567e+00 1.57079115e+00 -2.49655130e-05 -1.57079207e+00 -3.13369012e+00 2.43849999e+00 1.23782899e+00 -2.43849799e+00 1.23782584e+00 -1.57024981e+00 -8.06131544e-02 -1.57134130e+00 -3.14244962e+00 -1.57081518e+00 1.10506935e-04 1.57081017e+00 -6.81192312e-07 -1.57077188e+00 2.47585673e-05 1.57079499e+00 -4.69805554e-06 1.57079341e+00 -3.14162732e+00 -4.71239050e+00 -4.40413979e+00 -1.03479823e+00 1.99172153e-01 4.17639998e+00 3.34074260e+00 1.57081691e+00 -2.93417109e+00 -1.80914757e-05 1.26504247e+00 -7.07562646e-01 1.33428311e+00 3.14156207e+00 8.80554076e-01 -1.57080191e+00 2.38375572e-01 4.48139761e-05 5.47482370e-01 -1.44005018e+00 -2.19261851e+00 -2.92176337e+00 1.81979154e+00 1.57074640e+00 -1.01621656e+00 1.97077641e+00 -2.88269855e+00 -1.04126911e+00 3.02792471e+00 -1.57084495e+00 -6.61011716e-01 -7.54336843e-01 -1.29801343e+00 -1.19093278e-05 -1.63549296e+00 -4.71233848e+00 -2.01327100e+00 -3.43095046e-05 -2.69630391e+00 -1.18383207e+00 -1.07742816e+00] VQE eigenvalue: -193.9999993988201 VQE result: -79.99999939882011 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d870>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4c790>} Optimization terminated successfully. Current function value: -193.999999 Iterations: 68 Function evaluations: 7663 Gradient evaluations: 79 fev:7663 E => -193.9999994189291 Finnished. VQE Total time: 65.41 s fev/s: 117.16 VQE solution parameters: [-1.57080178e+00 -3.14165014e+00 2.04709284e+00 -1.58953008e+00 1.57076542e+00 3.14156943e+00 -1.10505847e+00 2.82927455e+00 1.57246116e+00 -1.96635547e-04 -3.67804873e+00 1.91427201e+00 4.71241231e+00 3.14155861e+00 1.15876842e+00 -1.63205609e+00 1.57080825e+00 7.49209416e-07 -2.66098500e+00 -2.60294065e+00 4.38023027e-01 -3.14164739e+00 -3.14163186e+00 -1.01525070e+00 -1.44338941e+00 1.79488533e+00 1.57076730e+00 -7.24957460e-06 -7.53113155e-04 2.05315685e+00 -1.57081173e+00 3.14164212e+00 -1.57079711e+00 1.48100284e+00 1.57084505e+00 2.66902178e-01 -4.71238029e+00 2.46039747e+00 1.57078853e+00 3.00911225e+00 1.57079148e+00 3.19264214e+00 -1.57078702e+00 -4.59351289e-01 -1.57079410e+00 -3.12297093e+00 1.57079568e+00 -1.96490208e+00 -1.57079261e+00 -3.40292579e+00 -1.57079360e+00 1.23010338e-05 -1.57078623e+00 3.14158848e+00 1.57080085e+00 -3.14162037e+00 -1.57080119e+00 1.70141242e+00 1.39235020e+00 -2.29888734e-01 1.39236009e+00 2.30526960e-01 -1.57082307e+00 -6.53484068e-01 3.14163916e+00 -1.87246725e+00 2.43018232e-05 -1.76695389e+00 -5.54318995e-01 2.90640270e+00 3.13987965e+00 1.99880804e+00 -4.53939868e+00 -2.20936926e+00 -3.14158278e+00 1.78545385e+00 1.62691322e+00 5.21215985e-01 3.14161646e+00 1.92932164e+00 -1.97889352e+00 -2.60970752e+00 1.13278040e+00 -2.89392614e+00 -1.57076957e+00 -2.88624495e+00 -1.79307436e+00 2.16109902e+00 -2.50251973e-05 -2.13192330e+00 -1.57115040e+00 9.80721359e-01 3.14163172e+00 3.14449079e-02 1.58746639e+00 1.52958824e-02] VQE eigenvalue: -193.99999941892904 VQE result: -79.99999941892904 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d900>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d7e0>} Optimization terminated successfully. Current function value: -183.500000 Iterations: 79 Function evaluations: 9021 Gradient evaluations: 93 fev:9021 E => -183.49999983440878 Finnished. VQE Total time: 79.67 s fev/s: 113.23 VQE solution parameters: [ 1.57079144e+00 1.41543666e+00 1.57079520e+00 1.57079720e+00 1.57082360e+00 1.06898819e-05 3.14158304e+00 -2.21902938e+00 -1.57078373e+00 6.74254804e-07 1.64232848e+00 1.60834019e+00 1.57078692e+00 -3.82019653e-05 -1.14489070e+00 1.38986476e+00 4.35120626e-01 1.48396459e-04 -3.45381938e+00 -1.26928446e+00 1.57079410e+00 -3.14157824e+00 -3.14158534e+00 2.11418408e+00 3.14162992e+00 -1.30515414e+00 -1.05879242e-05 1.77758070e+00 -3.14159556e+00 5.02005696e-01 -3.14162016e+00 -3.66400901e-01 1.57079523e+00 -2.53127451e+00 -2.98623939e+00 -9.60486032e-01 -1.54024900e-01 1.96507149e+00 2.98757177e+00 1.17652141e+00 -1.57079412e+00 2.95091030e+00 1.57079243e+00 1.68991382e+00 1.57079572e+00 -2.00292905e+00 1.57078767e+00 -1.06809725e-05 -1.57080824e+00 -1.96183651e-06 1.57078343e+00 -2.84260574e+00 7.08339597e-06 -1.26384397e+00 -1.24124986e-05 1.52711803e+00 -1.42935873e-05 3.02129750e+00 -1.72500856e-05 -1.10261033e-01 2.17925693e-05 -2.39694501e+00 -3.66251075e+00 3.14158066e+00 1.57079907e+00 1.81333903e+00 -3.14157443e+00 2.58740927e+00 1.57077927e+00 2.61958292e+00 3.14167583e+00 1.13751353e+00 1.60827296e+00 1.19621377e-01 -7.36715654e-06 -1.95311607e+00 1.73543697e+00 -3.48149098e-01 2.00593117e+00 -2.79694952e-01 1.66217937e+00 -2.66798755e+00 -3.14159480e+00 2.72878724e+00 3.35576811e-05 2.52023667e+00 3.14164619e+00 1.04629042e+00 3.14159539e+00 -1.78449769e+00 -6.28319383e+00 2.00694277e+00 3.14157485e+00 1.75556791e+00 -5.20947533e-01 -5.01979584e-01] VQE eigenvalue: -183.49999983440878 VQE result: -69.49999983440878 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e3b0>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f5b0>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 90 Function evaluations: 9603 Gradient evaluations: 99 fev:9603 E => -193.9999997333704 Finnished. VQE Total time: 85.71 s fev/s: 112.04 VQE solution parameters: [-1.57079696e+00 -3.14159258e+00 -1.54874835e+00 1.75572552e-01 3.14129832e+00 1.52231927e+00 -1.89343960e+00 -3.33051189e+00 1.57079622e+00 3.14157470e+00 1.20107480e-01 -1.29045468e-01 1.57078230e+00 -3.14159109e+00 3.62526595e+00 5.34004085e+00 2.13685972e+00 -2.85049678e+00 -1.57081325e+00 -4.37379762e-06 -2.96500279e+00 -2.11723195e+00 -3.05187226e+00 3.14095156e+00 4.08686637e+00 -6.28315328e+00 3.14171194e+00 -5.21668167e-01 -2.53644161e+00 -2.73842802e+00 4.71268085e+00 1.91718665e-04 -1.57079415e+00 -7.49840302e-01 -4.71238574e+00 -2.37590617e-04 1.57079724e+00 -3.14154948e+00 -1.57080128e+00 -5.11798522e-01 4.71149912e+00 -2.54807225e+00 4.71151903e+00 -5.78000498e-01 -1.57078349e+00 -2.73955239e+00 1.57078989e+00 3.29603284e-05 1.57080309e+00 -2.71736904e+00 4.71238779e+00 -2.99028662e+00 1.57079835e+00 -3.14159253e+00 1.57080657e+00 3.14164591e+00 1.57078529e+00 -3.14164558e+00 -1.57079552e+00 -2.12202297e-06 -1.57079426e+00 2.65012806e-01 -1.57079720e+00 -5.58777694e+00 -6.28319722e+00 -2.65199887e+00 -1.57082442e+00 -5.01258620e-01 3.72218365e-01 1.51345545e+00 -3.14160393e+00 -4.89061994e-01 1.45171042e+00 -2.61039252e+00 -3.72428923e-06 -8.21664843e-01 1.84738819e+00 -2.77812080e+00 -6.29166463e-01 -5.20146659e-01 3.14159834e+00 -1.12704221e+00 -1.47937964e+00 -1.29887529e+00 1.66052110e+00 2.82906778e+00 -6.25526325e-01 -1.40141073e+00 1.57068884e+00 1.18251305e+00 2.12148337e+00 -3.38215936e-01 -3.14193872e+00 1.68170452e+00 -1.76941935e-01 -1.58373754e+00] VQE eigenvalue: -193.9999997333704 VQE result: -79.9999997333704 Solution: 5 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4ecb0>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d480>} Optimization terminated successfully. Current function value: -183.999999 Iterations: 64 Function evaluations: 7178 Gradient evaluations: 74 fev:7178 E => -183.99999878620403 Finnished. VQE Total time: 61.72 s fev/s: 116.29 VQE solution parameters: [-1.57081708e+00 3.14157606e+00 -3.28361647e+00 -1.71267695e+00 -2.01214197e+00 -3.14154650e+00 -1.95892111e+00 -3.11857853e+00 1.57073066e+00 -3.14163702e+00 -3.84438195e+00 -2.02889720e+00 -1.04614704e+00 5.01455219e-05 2.90199041e-01 -2.44155929e+00 1.57092056e+00 -2.60800613e-03 1.60510859e+00 3.15145856e+00 -1.57087491e+00 3.14152287e+00 -2.89282434e-01 4.43440378e+00 -3.14081905e+00 2.08447766e-01 -3.14155447e+00 -2.11614991e+00 -4.91957123e-01 2.27212385e+00 1.57073733e+00 -3.14159070e+00 -1.57079414e+00 7.22393522e-01 1.57078511e+00 3.14158447e+00 1.57085462e+00 -3.14151429e+00 1.57083834e+00 -5.62419314e-02 -1.57083234e+00 -6.49722930e-01 -1.57075045e+00 3.14160731e+00 -1.57080776e+00 -4.41845935e-05 -1.57078634e+00 -1.90110361e-01 1.57079426e+00 1.53603091e+00 -1.57082154e+00 -1.32446753e+00 1.57078798e+00 -2.78731512e-01 1.57078856e+00 3.14160416e+00 -1.57079353e+00 6.99373895e-06 1.57080690e+00 -3.14160957e+00 1.57076509e+00 -3.88574465e-01 1.57081401e+00 -3.72337991e+00 -6.96765241e-05 -9.16956799e-01 -3.58293222e+00 -5.33403200e-01 -3.88796873e-01 1.22329390e+00 2.58147539e-05 9.55347341e-01 -1.28096411e+00 -1.25546871e+00 5.24595530e-01 -2.81236113e+00 -1.35016255e+00 -2.98110496e+00 2.61229367e-03 2.44126860e+00 -3.17726033e+00 1.68537674e-01 -3.14172619e+00 2.30664099e+00 1.64916452e+00 1.52024093e+00 1.57155544e+00 -3.10126543e+00 -4.71236359e+00 7.59484001e-01 1.88049997e+00 2.34454708e+00 -6.37505850e-05 1.42692662e+00 -1.55079278e+00 1.58094181e+00] VQE eigenvalue: -183.99999878620403 VQE result: -69.99999878620403 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 1, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4cd30>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4c790>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 76 Function evaluations: 8536 Gradient evaluations: 88 fev:8536 E => -193.99999991996108 Finnished. VQE Total time: 74.73 s fev/s: 114.22 VQE solution parameters: [-1.57079174e+00 -3.14159131e+00 -3.21262899e-01 -2.02630086e+00 -1.11444540e+00 9.55234378e-01 1.57080531e+00 5.46621048e-08 -5.50799114e-06 1.69232106e+00 -1.57078950e+00 -3.14159054e+00 2.99311172e+00 1.45037677e-01 1.57074698e+00 -1.71295925e-05 2.98083635e+00 -7.70031425e-01 -3.14152523e+00 -2.42427625e+00 2.56328621e+00 -1.04139272e+00 1.57078184e+00 1.40374002e-06 3.55990145e-05 -1.14122267e+00 -1.57079953e+00 -3.14158700e+00 1.27138970e-05 -2.46744282e+00 1.57081068e+00 8.96885043e-06 1.57079275e+00 -1.99701422e+00 -1.57079532e+00 3.14159183e+00 -1.57080363e+00 -1.02944208e+00 1.55836739e-01 -1.16746083e-01 3.29743507e+00 3.02485810e+00 4.71239770e+00 3.62624209e+00 -1.57081329e+00 -5.06271053e-01 1.57079705e+00 -3.25403484e+00 -1.57079143e+00 -3.14158552e+00 -1.57078993e+00 -3.14160555e+00 1.57079224e+00 -3.65465037e+00 -1.37549607e+00 4.33458150e-01 1.76609722e+00 4.33460024e-01 1.97338324e+00 5.71808342e-01 -1.16820919e+00 -2.56982218e+00 1.57079054e+00 1.70657739e+00 -3.14157001e+00 -2.78069814e-01 1.02589828e+00 -2.96053884e+00 -3.14158322e+00 -8.24978319e-01 -1.57077774e+00 1.53953632e-01 2.62145184e-05 -1.87480290e+00 1.71772291e+00 1.48032056e+00 -2.94877302e-05 2.26183501e+00 -1.68596014e+00 -9.80671479e-01 1.57087811e+00 -2.86201654e+00 4.43270947e+00 -2.68715280e+00 -1.39104840e-05 1.41120423e+00 -1.57086453e+00 1.94150233e+00 3.14158352e+00 -2.48082625e-01 -1.57078614e+00 -2.62965990e+00 -3.14159173e+00 1.66785494e+00 -1.71016834e+00 2.63415534e+00] VQE eigenvalue: -193.99999991996103 VQE result: -79.99999991996103 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dc60>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e050>} Optimization terminated successfully. Current function value: -209.999997 Iterations: 74 Function evaluations: 8633 Gradient evaluations: 89 fev:8633 E => -209.9999968243694 Finnished. VQE Total time: 78.86 s fev/s: 109.47 VQE solution parameters: [-1.57080627e+00 -3.14159464e+00 -1.57080673e+00 3.61276736e-05 4.62158387e-01 -4.01650058e+00 -3.14155832e+00 -2.78104439e+00 -3.14159159e+00 2.70917378e+00 2.74031174e+00 -3.14165762e+00 -3.12854580e+00 -1.39134693e+00 -1.56045778e+00 8.67618107e-05 -1.20556440e+00 1.32904705e+00 -1.57079402e+00 -2.37046452e-06 1.66354846e+00 -1.60929479e+00 -1.57079677e+00 -3.14155888e+00 -1.07404876e-01 -3.85565520e+00 1.95271199e+00 1.37852178e-05 -3.14237942e+00 2.03454313e+00 1.63432724e+00 -5.76202366e-02 -1.57078499e+00 4.98077533e+00 -1.57081086e+00 -3.65171332e-01 -1.57079240e+00 -1.39697922e-05 -1.57079217e+00 3.16501116e-06 1.57079536e+00 2.46493263e-05 -1.57080410e+00 3.14160359e+00 -1.57078811e+00 1.28325586e-02 1.57078523e+00 -3.93852201e-02 1.57079176e+00 -1.15622296e+00 -1.57079474e+00 3.59320231e+00 1.57080115e+00 -1.92960167e+00 1.57088387e+00 -3.07115227e+00 -1.57071115e+00 -4.80309837e-05 1.57088767e+00 -2.35016628e-05 -1.57088255e+00 3.14086729e+00 1.57079021e+00 3.87726420e+00 -7.26024115e-06 1.22969475e+00 -1.86067177e+00 1.46137750e+00 1.57077242e+00 1.63349097e+00 -1.57079337e+00 5.72074634e-01 1.16954101e+00 2.51841188e+00 -4.71007599e+00 2.09810256e+00 1.03606087e-02 -8.88249771e-01 -1.79633684e+00 -3.06214132e+00 2.18774689e-05 9.59882532e-01 1.53246067e+00 -3.32078462e-02 3.14165826e+00 -1.19899965e-01 -1.65189644e+00 2.18517110e+00 -2.75968661e+00 6.55443314e-01 1.57113382e+00 2.02128867e+00 -8.57490770e-02 -7.28251850e-01 -3.14158754e+00 -2.90103895e+00] VQE eigenvalue: -209.9999968243694 VQE result: -95.99999682436939 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:None and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcc3a0>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc4c0>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 84 Function evaluations: 9215 Gradient evaluations: 95 fev:9215 E => -193.999999935115 Finnished. VQE Total time: 84.35 s fev/s: 109.25 VQE solution parameters: [ 1.57079435e+00 3.14147588e+00 -1.36967589e+00 -1.58918629e+00 1.57085048e+00 1.81853513e-06 -3.14164004e+00 2.17430016e+00 -1.57078508e+00 -8.21008658e-06 1.71732980e-07 2.09896146e+00 -1.57079881e+00 -3.14159317e+00 -2.04962064e+00 -2.90029536e+00 -3.14152695e+00 -1.24386979e+00 -3.40748732e-01 -4.01224605e+00 -1.57080716e+00 3.14157867e+00 7.29370449e-01 2.87885792e+00 -1.57079258e+00 1.50139890e-05 -1.30437525e+00 -1.83934495e+00 -2.54587492e+00 5.04417941e+00 1.57075229e+00 3.28407484e-05 -1.57080022e+00 -1.54943014e+00 -1.57068117e+00 3.07433743e+00 1.36365978e+00 3.64948863e-01 -1.77792621e+00 2.77668505e+00 -7.03268062e-01 -2.16574139e+00 -2.43832345e+00 -2.16573932e+00 1.57080484e+00 4.31397808e-01 1.57079389e+00 -3.14153979e+00 -1.57079485e+00 3.14158959e+00 1.57079403e+00 2.64799420e-01 -1.57078794e+00 1.76875030e+00 -4.71239149e+00 1.60092967e+00 1.57079512e+00 -1.84663158e+00 -1.57079826e+00 3.14160068e+00 1.57080502e+00 5.69953426e-01 -1.57079836e+00 -3.02904817e+00 3.14159121e+00 -1.55501129e+00 3.14154148e+00 1.46245969e+00 -4.71236442e+00 2.71719217e+00 -3.14157204e+00 -2.57827106e+00 -1.57079166e+00 -2.19385269e+00 -3.14157180e+00 -9.05736062e-01 3.67351365e+00 -5.98539754e-01 -1.57080085e+00 -4.81442821e-02 -1.35377308e+00 -1.18890502e+00 3.14156648e+00 3.17186266e-01 5.41150152e+00 1.71492622e+00 -2.10382121e-06 -1.49244855e+00 1.82965110e+00 -2.76794949e-01 1.38698619e+00 -6.04473836e-01 3.14151766e+00 -3.01158894e+00 1.58881608e+00 -2.92615370e+00] VQE eigenvalue: -193.999999935115 VQE result: -79.999999935115 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, {'tol': 0.001, 'options': {'maxiter': 1000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc4c0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcc280>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcd090>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 69 Function evaluations: 11252 Gradient evaluations: 116 fev:11252 E => -209.99999987653527 Finnished. VQE Total time: 100.17 s fev/s: 112.33 VQE solution parameters: [ 4.71238901e+00 3.14159350e+00 1.11058425e+00 -2.22129203e+00 -2.67226975e-01 5.46815880e-06 2.57148677e+00 1.93211125e-05 -7.44523116e-01 4.31877094e-01 1.57079271e+00 -1.73057201e-05 -1.57278725e+00 3.37257963e+00 -7.86694126e-05 -1.46801169e+00 3.11491338e+00 3.13627315e+00 3.14159120e+00 2.78488915e+00 -6.61845108e-06 1.41148230e+00 2.40528591e+00 2.76401000e-06 2.97155304e-05 -2.46152393e+00 3.60689374e-06 4.00817795e-01 3.14141139e+00 2.95803158e+00 -9.47251303e-07 2.33185626e+00 -1.57079597e+00 2.12790599e+00 1.57079391e+00 -3.14159481e+00 1.57079533e+00 -8.91910447e-07 1.57079617e+00 -1.37757284e-06 -4.71238789e+00 3.68102499e-01 1.57079709e+00 -1.57949688e+00 -1.57079622e+00 3.14167095e+00 -1.57079682e+00 1.84312569e-07 -1.57079663e+00 3.14159368e+00 1.57079669e+00 9.68007920e-08 -1.57079602e+00 -8.05491417e-06 -1.57079602e+00 3.14158136e+00 -1.57079614e+00 1.94705372e-07 1.57079679e+00 4.27119853e-07 1.57079486e+00 1.88117551e-07 1.57079650e+00 1.47156271e-06 -6.34281093e-06 -3.45661668e-01 1.30357007e+00 -7.23183912e-01 1.00068966e+00 -1.31738281e+00 -9.07898247e-01 -1.96835740e+00 1.84017165e-05 9.84301615e-01 2.30995444e-01 -2.57720931e+00 1.57078905e+00 2.36729531e+00 4.73906876e+00 2.15174641e+00 1.57079585e+00 2.65828872e+00 1.57079504e+00 -6.83008071e-01 2.30710239e+00 -1.40973920e+00 1.57082400e+00 2.19587158e+00 1.57079364e+00 5.64227054e-01 1.57061474e+00 5.00717315e-01 -1.57079405e+00 1.00685744e+00 4.13888867e+00 2.61973260e+00] VQE eigenvalue: -209.99999987653527 VQE result: -95.99999987653527 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcd240>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc1f0>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 30 Function evaluations: 5626 Gradient evaluations: 58 fev:5626 E => -209.99999999790248 Finnished. VQE Total time: 47.59 s fev/s: 118.22 VQE solution parameters: [ 1.57079639e+00 -3.14159584e+00 -1.03389747e+00 -9.38133302e-01 1.55257308e+00 1.68044546e+00 -1.57079650e+00 3.14159376e+00 -1.57079520e+00 -1.57079447e+00 1.57080208e+00 -1.57079652e+00 1.57079590e+00 -3.14159227e+00 -1.40620854e+00 4.04650213e-01 -3.58615087e+00 1.29968458e+00 1.57079538e+00 2.31912941e-07 6.45632580e-07 -2.26005319e+00 1.57079588e+00 2.58922779e-07 -1.98748004e-06 -1.61297922e+00 -1.57079615e+00 3.14159352e+00 -2.89635535e+00 -4.24425215e+00 3.14160694e+00 -2.30182543e+00 -1.57079541e+00 -9.34970257e-01 1.57079583e+00 3.14159391e+00 -1.57079389e+00 -1.58912866e+00 -2.10029584e+00 -1.57079838e+00 -1.57079649e+00 -4.36320930e-07 -1.04129531e+00 -1.57078772e+00 -1.57079869e+00 -1.97001296e+00 -1.57079276e+00 3.14158385e+00 -1.57079150e+00 -4.30291276e-01 7.08963425e-01 1.47955172e+00 3.85055752e+00 -1.66204124e+00 -4.95462378e-01 2.33840890e+00 -3.63705612e+00 2.33840762e+00 1.57079601e+00 -2.19741742e-01 -1.57079689e+00 -2.27055757e-07 -1.57079484e+00 -3.14159906e+00 2.34411813e-07 -5.66081553e-01 1.68042610e+00 5.40366058e-02 3.46985467e-06 -8.97543344e-01 1.57079937e+00 -1.56493566e+00 1.57079726e+00 -3.06345304e+00 1.61709044e-06 -1.03096547e+00 -2.70646816e+00 -1.37675143e+00 -1.45537056e+00 2.84709753e+00 2.69493593e-07 -1.33280194e+00 -1.57079557e+00 2.80799558e+00 3.26739505e-07 7.60748748e-01 1.57079737e+00 -7.03606528e-01 -1.38446020e-06 9.47713163e-01 -1.68056741e+00 -1.93327472e+00 -1.57080914e+00 -1.63729637e+00 1.03781903e+00 -7.62477420e-01] VQE eigenvalue: -209.99999999790253 VQE result: -95.99999999790253 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e680>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f520>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 136 Function evaluations: 20661 Gradient evaluations: 213 fev:20661 E => -193.99999999315662 Finnished. VQE Total time: 181.53 s fev/s: 113.82 VQE solution parameters: [ 1.57079592e+00 5.78143479e-07 -9.36673744e-03 -4.17344223e-01 1.40548832e+00 -1.04562252e-01 1.57079544e+00 -3.14159239e+00 -2.45287960e+00 -9.90722043e-01 -1.57079771e+00 -5.19232303e-07 -8.78702447e-01 1.10402295e+00 3.14159797e+00 2.83482195e+00 -5.92038534e-07 -1.14477071e+00 4.12853282e-01 3.14159299e+00 3.14159236e+00 2.67426509e+00 -2.89910278e+00 1.98136826e+00 1.57057787e+00 -3.14157003e+00 1.57079654e+00 3.14159280e+00 7.76001541e-08 1.61350968e-01 -1.57079636e+00 -3.14159306e+00 1.57079683e+00 -3.16718612e+00 1.57079533e+00 -3.44037716e-06 -1.57079596e+00 -2.58255221e+00 1.57079490e+00 2.29825600e+00 -1.57079723e+00 2.90124032e+00 -1.57079686e+00 8.22644107e-01 -1.57079627e+00 -3.14159415e+00 -1.57079627e+00 -9.27989374e-07 1.57079656e+00 4.77280458e-07 -1.57079601e+00 8.90356148e-07 1.57079618e+00 7.29427347e-07 1.57079605e+00 -2.91856543e+00 -4.71238930e+00 -3.20292298e+00 2.27475344e-02 -1.04006693e-01 3.11884576e+00 3.03758606e+00 1.57079603e+00 -3.11979195e+00 -6.72656159e-07 1.26493747e+00 -1.95346093e-01 1.33429033e+00 3.14159145e+00 8.80538447e-01 -1.21500398e+00 2.38295613e-01 -1.72601794e-06 5.47412201e-01 -1.92459679e+00 -2.19268882e+00 -1.57080144e+00 1.81972862e+00 1.57079568e+00 -1.01624600e+00 1.98364912e+00 -2.88272063e+00 -1.57079736e+00 3.02796854e+00 -1.66678352e+00 -6.61045892e-01 2.20213731e-04 -1.29806207e+00 -2.25042960e-07 -1.63549382e+00 -4.71238947e+00 -2.01325841e+00 -1.22818281e-08 -2.69635898e+00 -1.57935839e+00 -1.07746561e+00] VQE eigenvalue: -193.9999999931566 VQE result: -79.99999999315659 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d2d0>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4dcf0>} Optimization terminated successfully. Current function value: -190.000000 Iterations: 287 Function evaluations: 43359 Gradient evaluations: 447 fev:43359 E => -189.9999996710874 Finnished. VQE Total time: 388.58 s fev/s: 111.58 VQE solution parameters: [-1.57079638e+00 -3.14159261e+00 3.38621001e+00 -1.27748917e+00 1.57079595e+00 3.14159226e+00 -8.81058154e-07 1.33813367e+00 1.57079532e+00 -8.75782199e-07 -1.66084149e+00 1.29755272e+00 3.56947654e+00 3.14159996e+00 -3.14246385e-06 -2.90476642e+00 2.14437397e+00 6.12850845e-07 -3.14158566e+00 -2.08298145e+00 -1.87762707e-04 -2.85844450e+00 -3.13603021e+00 -4.55028222e-01 -1.50356978e+00 4.66693041e-02 1.57197650e+00 -8.14819167e-04 -1.53013501e-02 9.23246364e-01 -1.57083343e+00 3.14159354e+00 -1.57079646e+00 7.49326117e-01 1.57079579e+00 -1.15059876e+00 -3.55561194e+00 2.19290881e+00 4.14020295e-01 2.19290853e+00 1.57079603e+00 1.66429012e+00 -1.57079558e+00 -1.79664413e-07 -1.57079533e+00 -3.14159190e+00 4.71239152e+00 -3.14159281e+00 -1.57079708e+00 -3.14159771e+00 -1.57079702e+00 -2.04422971e-07 -1.57079626e+00 3.14159242e+00 1.57079478e+00 -3.14403208e+00 -1.57079599e+00 2.53564433e+00 1.57154090e+00 -1.16887681e-03 1.57153931e+00 1.33738091e-02 -1.57079663e+00 1.66716327e-01 3.14159193e+00 -1.87246185e+00 3.14159275e+00 -1.76694493e+00 -1.57079696e+00 2.90634911e+00 3.14159291e+00 1.99882024e+00 -4.44028103e+00 -2.20942558e+00 -1.14291215e+00 1.78542955e+00 1.57079901e+00 5.21219117e-01 5.73578119e-01 1.92934863e+00 -1.57079228e+00 -2.60976081e+00 1.57060871e+00 -2.89393734e+00 -1.57579613e+00 -2.88624608e+00 -3.05977471e+00 2.16122569e+00 -1.43570994e-03 -2.13176722e+00 -1.58002790e+00 9.80742781e-01 3.14163076e+00 3.14250546e-02 1.50071869e+00 1.52190043e-02] VQE eigenvalue: -189.9999996710874 VQE result: -75.99999967108741 Solution: 3 x00 = 0, x01 = 1, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 1, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4feb0>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d630>} Optimization terminated successfully. Current function value: -183.500000 Iterations: 156 Function evaluations: 25802 Gradient evaluations: 266 fev:25802 E => -183.4999999185623 Finnished. VQE Total time: 219.31 s fev/s: 117.65 VQE solution parameters: [ 1.57079603e+00 -1.80384963e-07 1.57079632e+00 1.93291558e-09 3.14159206e+00 9.11635566e-01 1.57079610e+00 -3.14159280e+00 -1.57079682e+00 1.57079558e+00 1.57079628e+00 1.57079634e+00 1.57079625e+00 -8.92040179e-09 -4.98320458e-01 1.35187399e+00 1.28420236e-03 8.04184133e-02 -3.14264350e+00 -1.97993570e+00 1.57079665e+00 -2.72424394e-07 -3.14159253e+00 2.22179232e+00 3.14159644e+00 -1.38792588e+00 -4.92115459e-08 1.80966520e+00 -3.14159382e+00 6.76233511e-01 -3.14159138e+00 -8.17031347e-01 1.57079639e+00 -2.80217581e+00 -2.79230191e+00 -1.03752730e+00 3.49289531e-01 1.03752723e+00 2.70731512e+00 1.57079457e+00 -1.57079613e+00 3.14159265e+00 4.34277715e-01 1.57079620e+00 1.57079654e+00 -2.65334795e+00 1.57079653e+00 4.64432424e-06 -1.57079654e+00 1.13293901e-07 1.57079609e+00 -3.14255706e+00 3.64806204e-07 -1.19472390e+00 1.10977471e-07 1.60549687e+00 1.00163024e-07 2.49422647e+00 -2.04064645e-08 -2.65063947e-01 -2.27069510e-07 -2.27091304e+00 -3.14159190e+00 2.18475828e+00 -6.10285877e-06 1.81306433e+00 -1.57079841e+00 2.58721724e+00 3.14159179e+00 2.61927867e+00 1.57079375e+00 1.13716701e+00 1.57079580e+00 1.19255060e-01 3.14159302e+00 -1.95330238e+00 1.46680871e+00 -3.48270778e-01 1.56951194e+00 -2.79875815e-01 1.57121427e+00 -2.66827442e+00 -3.14159298e+00 2.72856909e+00 2.64964533e-06 2.51990265e+00 3.14183205e+00 1.04610719e+00 3.14159987e+00 -1.78468293e+00 1.36941458e-07 2.00679165e+00 3.14158993e+00 1.75544251e+00 3.10442026e-07 -5.02011919e-01] VQE eigenvalue: -183.4999999185623 VQE result: -69.49999991856231 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbccaf0>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc8b0>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 194 Function evaluations: 29294 Gradient evaluations: 302 fev:29294 E => -209.9999995712407 Finnished. VQE Total time: 263.04 s fev/s: 111.37 VQE solution parameters: [-1.57079799e+00 -2.57843783e+00 -1.36718572e-07 -1.35279274e-01 3.14159408e+00 2.94131146e+00 2.00511832e-06 -3.09765737e+00 1.57079439e+00 1.57079523e+00 -1.57079720e+00 -1.31593399e-06 1.57079562e+00 -3.14159196e+00 3.14159292e+00 3.89569966e+00 1.57079600e+00 -3.14159137e+00 -1.54813304e+00 -1.62755587e+00 -3.14159494e+00 -2.04158986e+00 -6.28911378e+00 3.19360879e+00 3.14159300e+00 -4.54734700e+00 3.14159162e+00 -6.93571160e-01 -3.14159443e+00 -5.82652031e-01 3.14159159e+00 -2.43271525e+00 -1.57079903e+00 6.10179152e-07 -4.71238908e+00 -1.86865345e-07 1.57079504e+00 -3.14159173e+00 -1.57079665e+00 1.79955507e-06 4.14923463e+00 -1.57079765e+00 4.71238853e+00 8.93461653e-02 -2.03177640e+00 -1.76062976e+00 2.03177499e+00 1.38096191e+00 1.57079597e+00 -1.59349636e+00 4.71238834e+00 -3.14159492e+00 1.57079506e+00 -3.14159365e+00 1.57079464e+00 3.14159233e+00 1.57079544e+00 -3.14159384e+00 -1.57079684e+00 -6.15291774e-07 -1.57079648e+00 -1.81829126e-06 -1.57079596e+00 -3.14159303e+00 -6.28318574e+00 -2.65205088e+00 -1.57079854e+00 -5.01202326e-01 -1.57079780e+00 1.51344133e+00 -1.57079705e+00 -4.88953656e-01 3.14159229e+00 -2.61036318e+00 -2.18060844e-07 -8.21470430e-01 1.57079599e+00 -2.77806867e+00 -1.46502165e-06 -5.20177650e-01 1.51405027e+00 -1.12675465e+00 -1.57079912e+00 -1.29855367e+00 1.56486802e+00 2.82909987e+00 1.57079628e+00 -1.40143467e+00 1.57079487e+00 1.18249300e+00 1.57079737e+00 -3.38283079e-01 -1.57079706e+00 1.68161848e+00 -1.57079744e+00 -1.58360005e+00] VQE eigenvalue: -209.99999957124055 VQE result: -95.99999957124055 Solution: 5 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbccd30>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcd900>} Optimization terminated successfully. Current function value: -189.999999 Iterations: 41 Function evaluations: 7178 Gradient evaluations: 74 fev:7178 E => -189.99999949840796 Finnished. VQE Total time: 64.56 s fev/s: 111.18 VQE solution parameters: [ 1.57079791e+00 3.14159581e+00 -4.71310922e+00 -1.56573188e+00 2.24304610e-03 -4.73175889e-01 -1.57079896e+00 -3.14158994e+00 1.57079496e+00 -1.57079757e+00 -3.14159262e+00 -1.30432034e+00 1.57079549e+00 1.57079798e+00 1.57079490e+00 -3.14159292e+00 1.56770041e+00 -2.86971283e-03 1.55984686e+00 3.15079408e+00 -1.57539958e+00 3.12441422e+00 -1.48581119e-02 3.35536241e+00 -3.14159252e+00 1.60864013e+00 -3.17744686e+00 -1.71822142e+00 1.56905566e+00 -4.40740001e-07 7.20854005e-03 -2.05879063e+00 -1.57079663e+00 -1.57151454e+00 1.57079588e+00 3.14159111e+00 1.57079620e+00 -3.14057044e+00 2.12139369e+00 -1.57079907e+00 -1.57079679e+00 -1.61728106e-07 -1.57079626e+00 3.14159304e+00 -4.16179200e+00 -1.57079770e+00 -1.57079619e+00 1.37506664e-01 -1.57079786e+00 6.10033819e-01 -1.57079844e+00 -1.30895163e+00 1.57079623e+00 -3.14924941e-03 1.57079807e+00 3.14159429e+00 -1.57079636e+00 -1.70732645e-07 1.57079636e+00 -3.17705829e+00 1.57079621e+00 6.36705235e-03 1.57079658e+00 -3.14159230e+00 1.05964121e-05 -9.16984329e-01 -1.56879939e+00 -5.33398149e-01 -1.90236043e-07 1.22330857e+00 -1.57079721e+00 9.55386024e-01 -1.57079747e+00 -1.25547354e+00 1.57079738e+00 -2.81231873e+00 -4.51667488e-08 -2.98108173e+00 4.22120169e-03 2.44130190e+00 -3.15589630e+00 1.68566584e-01 -3.12380798e+00 2.30662024e+00 1.55627595e+00 1.52023881e+00 1.57079676e+00 -3.10123569e+00 -4.71765471e+00 7.59491109e-01 3.14333244e+00 2.34455356e+00 1.56741664e+00 1.42690854e+00 -1.57586108e+00 1.58093700e+00] VQE eigenvalue: -189.99999949840787 VQE result: -75.99999949840787 Solution: 6 x00 = 0, x01 = 0, x02 = 1, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 1, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f5b0>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ecb0>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 94 Function evaluations: 14938 Gradient evaluations: 154 fev:14938 E => -193.99999999466465 Finnished. VQE Total time: 136.80 s fev/s: 109.20 VQE solution parameters: [-1.57079604e+00 -3.14159284e+00 8.88187794e-02 -1.22806732e+00 -1.57079593e+00 -1.51574355e-06 1.57079688e+00 -1.68453639e-07 8.55628518e-07 1.51686929e+00 1.57079585e+00 -3.14159351e+00 3.14166385e+00 3.66231984e-01 1.57080714e+00 -3.14159288e+00 3.14130598e+00 -8.53653433e-02 -3.14159378e+00 -2.28884965e+00 3.18255345e+00 5.41248484e-01 -1.57079745e+00 -5.90497559e-06 -1.79162529e+00 -1.49799908e+00 -1.57079601e+00 -3.14159230e+00 -1.60488832e-06 -2.27045445e+00 1.57079654e+00 3.83364176e-07 1.57079627e+00 -1.35737976e+00 -1.57079662e+00 2.71400347e+00 -1.57079668e+00 -4.62427378e-02 -4.77377757e-02 -2.00374776e-01 3.18933158e+00 2.94121942e+00 1.85480289e+00 3.64816118e+00 1.28678966e+00 -5.06543023e-01 1.57079719e+00 -3.14156810e+00 -1.57079475e+00 -3.14159327e+00 -1.57079686e+00 -3.14159028e+00 1.57079609e+00 -3.12048335e+00 1.57079311e+00 -9.50492731e-01 1.57079423e+00 3.98910180e-01 2.41839313e+00 2.69886326e-01 -7.23199526e-01 -2.87170488e+00 1.57079642e+00 1.86864798e+00 -3.14159288e+00 -2.78063389e-01 6.91833902e-07 -2.96045329e+00 -3.14159361e+00 -8.24951254e-01 -4.71238848e+00 1.54021167e-01 -1.15172285e-07 -1.87478745e+00 1.57072661e+00 1.48035353e+00 -1.14299446e-05 2.26189619e+00 -1.57051164e+00 -9.80547586e-01 1.57079815e+00 -2.86195905e+00 4.67728788e+00 -2.68708435e+00 -3.75233202e-07 1.41122537e+00 -1.49977034e+00 1.94151940e+00 3.14159332e+00 -2.48120223e-01 -1.57079507e+00 -2.62967321e+00 -3.14159754e+00 1.66782301e+00 -1.60061047e+00 2.63413058e+00] VQE eigenvalue: -193.99999999466465 VQE result: -79.99999999466465 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d7e0>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4edd0>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 296 Function evaluations: 44620 Gradient evaluations: 460 fev:44620 E => -209.99999950119786 Finnished. VQE Total time: 394.13 s fev/s: 113.21 VQE solution parameters: [-1.57079673e+00 -3.14159304e+00 -1.57669378e+00 5.23825077e-04 1.28827917e+00 -3.17590882e+00 -2.91632341e+00 -3.58353274e-07 -2.25025167e+00 3.14159242e+00 2.70345019e+00 -1.48580035e+00 -1.57079715e+00 -1.09346833e-06 -1.57079793e+00 3.99328048e-06 -1.90578486e+00 -1.45362425e-02 -1.57079617e+00 -1.25101627e-06 1.41022611e+00 -1.52283447e+00 -1.57079678e+00 -3.14159360e+00 1.57079552e+00 -3.14159307e+00 3.14159251e+00 -2.78293873e-02 -1.57079671e+00 8.01551605e-08 1.11787246e+00 1.57909722e+00 -1.57079728e+00 3.11731433e+00 -1.57079678e+00 -1.17647092e-01 -1.57079683e+00 -2.19372840e-06 -1.57079707e+00 -1.52889468e-06 1.57079552e+00 -7.56761416e-07 -1.57079602e+00 2.70483866e+00 -1.57079641e+00 1.98847822e-01 1.57079606e+00 -1.61138256e+00 1.57079627e+00 -1.57194277e+00 -1.57079663e+00 3.19958669e+00 1.57079645e+00 -1.78954238e+00 1.57079594e+00 -3.17020540e+00 -2.91661486e+00 -5.52575306e-02 2.91661411e+00 -5.52573654e-02 -1.57079757e+00 2.00906193e+00 1.57079551e+00 3.12692056e+00 -1.31499690e-06 1.22961326e+00 -2.85705449e+00 1.46138005e+00 1.79606601e+00 1.63343832e+00 -6.79455168e-01 5.72144645e-01 1.60682192e+00 2.51846082e+00 -3.14159302e+00 2.09828744e+00 5.44561421e-06 -8.88206623e-01 -2.80630005e+00 -3.06209850e+00 9.37873541e-07 9.59960915e-01 1.61814150e+00 -3.31928636e-02 3.14159202e+00 -1.19822992e-01 -1.34098748e-06 2.18524750e+00 -1.57079652e+00 6.55412276e-01 3.14159251e+00 2.02121540e+00 1.57825936e+00 -7.28207135e-01 -3.13566565e+00 -2.90098233e+00] VQE eigenvalue: -209.9999995011978 VQE result: -95.9999995011978 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:CG and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f400>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ee60>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 203 Function evaluations: 31234 Gradient evaluations: 322 fev:31234 E => -193.99999999618103 Finnished. VQE Total time: 270.37 s fev/s: 115.52 VQE solution parameters: [ 1.57079631e+00 3.14158478e+00 1.31211440e+00 -1.57790446e+00 1.57078812e+00 -9.57707034e-07 -3.14185202e+00 1.65411993e+00 -1.57079441e+00 1.05303802e-06 -1.24761402e-06 1.22192955e+00 -1.57079657e+00 -3.14159290e+00 -7.41442997e-02 -2.84436981e+00 -3.14159199e+00 -1.66518750e+00 9.33574642e-03 -2.70774144e+00 -1.57079618e+00 3.14159287e+00 3.06149192e-07 2.21970673e+00 -1.57079611e+00 -3.58412589e-07 -8.88734111e-01 -1.51359620e+00 -1.57079589e+00 3.14159265e+00 1.81777516e+00 -1.35395560e+00 1.57079613e+00 -1.91448736e+00 1.57078742e+00 2.53921333e+00 1.50362626e+00 -4.06338040e-02 -1.63796755e+00 3.18248592e+00 4.12133849e-01 -1.58718671e+00 -3.55372667e+00 -1.58718531e+00 1.57079602e+00 -2.17512539e-02 1.57079711e+00 -3.14159268e+00 -1.57079649e+00 3.14159294e+00 1.57079656e+00 3.92467957e-03 -3.16146788e+00 1.87370258e+00 -3.12171732e+00 1.26789012e+00 1.57079649e+00 -1.70129977e+00 -1.57079642e+00 2.58923340e+00 1.57079676e+00 1.82345340e+00 -1.57079551e+00 -3.14159222e+00 -3.21846784e-07 -1.55515887e+00 3.14158294e+00 1.46220409e+00 -4.71236750e+00 2.71700049e+00 -3.14159265e+00 -2.57855772e+00 -1.57079603e+00 -2.19403055e+00 -3.14159284e+00 -9.05906827e-01 1.64168366e+00 -5.98774162e-01 -1.57079562e+00 -4.83289488e-02 -1.57926720e+00 -1.18900764e+00 3.14159296e+00 3.16918733e-01 4.71238879e+00 1.71471931e+00 -4.73021688e-08 -1.49256822e+00 1.52640122e+00 -2.77004774e-01 3.14158985e+00 -6.04529490e-01 1.78095684e+00 -3.01165357e+00 1.56392481e+00 -2.92622689e+00] VQE eigenvalue: -193.99999999618097 VQE result: -79.99999999618097 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, {'method': 'CG', 'tol': 0.001, 'options': {'maxiter': 1000, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ee60>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbccaf0>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcca60>} fev:8441 E => -193.99979220645096 Normal return from subroutine COBYLA NFVALS = 8441 F =-1.939998E+02 MAXCV = 0.000000E+00 X = 1.570719E+00 -9.199706E-05 5.619758E-01 -3.165337E+00 -3.141774E-01 -1.894185E+00 1.570824E+00 -1.468102E-04 4.713437E-05 -3.142284E-01 1.570879E+00 1.585728E-04 -1.565720E+00 3.143800E+00 2.431918E+00 -1.393108E+00 1.570786E+00 3.141677E+00 2.464043E+00 3.605670E+00 Classical optimization exited with an error index: 1 fev:8441 E => -193.99979220645096 Finnished. VQE Total time: 82.26 s fev/s: 102.61 VQE solution parameters: [ 1.57071911e+00 -9.19970589e-05 5.61975788e-01 -3.16533725e+00 -3.14177449e-01 -1.89418529e+00 1.57082433e+00 -1.46810237e-04 4.71343694e-05 -3.14228402e-01 1.57087925e+00 1.58572814e-04 -1.56571990e+00 3.14380027e+00 2.43191802e+00 -1.39310836e+00 1.57078628e+00 3.14167749e+00 2.46404310e+00 3.60567031e+00 -3.05666080e-04 2.66486186e+00 3.12870555e+00 1.55478009e+00 1.15596929e+00 -3.14116105e+00 -1.11585612e+00 1.64689730e+00 1.57053573e+00 3.14160052e+00 -1.17653765e+00 2.95949600e+00 -1.57076081e+00 3.13998289e+00 1.57056500e+00 -3.14172430e+00 1.57108568e+00 -2.98738360e-01 3.28566384e+00 2.42939158e+00 -2.99750931e+00 -2.42947800e+00 1.57093424e+00 -3.30085184e-01 -1.57104805e+00 3.03767834e+00 -1.57093478e+00 2.33600572e+00 -1.57087886e+00 2.79604408e+00 1.57083689e+00 -6.65281914e-05 -1.57085895e+00 9.91721107e-05 1.57115851e+00 3.12803149e+00 -1.57103219e+00 -2.66448029e-04 1.57095870e+00 -1.11525905e+00 1.57076430e+00 -4.02217642e-01 4.71264086e+00 1.74500680e-02 1.51832674e-04 -2.51507920e+00 1.66928286e+00 -1.03952691e+00 -1.61887883e-04 -1.83378186e+00 -1.57065002e+00 -7.29608499e-01 4.63949117e-05 3.18754948e+00 5.53700872e-03 -4.00156259e+00 1.68608183e+00 7.59603923e-01 6.97237948e-05 8.18844747e-01 9.75480911e-01 3.56622045e+00 1.57054652e+00 -2.39027703e+00 1.57069593e+00 -2.38838340e+00 2.72633387e+00 1.75538216e+00 1.63893575e+00 5.89023709e-01 3.14209140e+00 -1.18517863e-01 -4.32925800e-01 2.90264428e+00 5.27401280e+00 2.77190105e+00] VQE eigenvalue: -193.99979220645096 VQE result: -79.99979220645096 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: -3.056661E-04 2.664862E+00 3.128706E+00 1.554780E+00 1.155969E+00 -3.141161E+00 -1.115856E+00 1.646897E+00 1.570536E+00 3.141601E+00 -1.176538E+00 2.959496E+00 -1.570761E+00 3.139983E+00 1.570565E+00 -3.141724E+00 1.571086E+00 -2.987384E-01 3.285664E+00 2.429392E+00 -2.997509E+00 -2.429478E+00 1.570934E+00 -3.300852E-01 -1.571048E+00 3.037678E+00 -1.570935E+00 2.336006E+00 -1.570879E+00 2.796044E+00 1.570837E+00 -6.652819E-05 -1.570859E+00 9.917211E-05 1.571159E+00 3.128031E+00 -1.571032E+00 -2.664480E-04 1.570959E+00 -1.115259E+00 1.570764E+00 -4.022176E-01 4.712641E+00 1.745007E-02 1.518327E-04 -2.515079E+00 1.669283E+00 -1.039527E+00 -1.618879E-04 -1.833782E+00 -1.570650E+00 -7.296085E-01 4.639491E-05 3.187549E+00 5.537009E-03 -4.001563E+00 1.686082E+00 7.596039E-01 6.972379E-05 8.188447E-01 9.754809E-01 3.566220E+00 1.5 [<function VQE.run.<locals>.objective_function at 0x76957cbcd090>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcdcf0>} 70547E+00 -2.390277E+00 1.570696E+00 -2.388383E+00 2.726334E+00 1.755382E+00 1.638936E+00 5.890237E-01 3.142091E+00 -1.185179E-01 -4.329258E-01 2.902644E+00 5.274013E+00 2.771901E+00 fev:6113 E => -193.99995290919352 Normal return from subroutine COBYLA NFVALS = 6113 F =-1.940000E+02 MAXCV = 0.000000E+00 X = 1.570834E+00 -3.141591E+00 1.671579E+00 1.268089E+00 3.037600E+00 4.526010E+00 -1.571178E+00 3.141693E+00 -3.141501E+00 -2.603113E+00 1.571164E+00 -2.478614E-04 1.570586E+00 -3.142052E+00 -1.459071E+00 1.499202E+00 -3.142582E+00 2.249549E+00 3.140892E+00 2.316232E+00 1.736402E+00 -1.905853E+00 1.571227E+00 4.811972E-04 1.570410E+00 1.256201E-04 1.998728E-04 2.914254E+00 -1.570872E+00 -3.141718E+00 4.705590E+00 -1.626810E+00 -1.570727E+00 -1.676248E+00 1.570777E+00 Classical optimization exited with an error index: 1 fev:6113 E => -193.99995290919352 Finnished. VQE Total time: 60.92 s fev/s: 100.34 VQE solution parameters: [ 1.57083386e+00 -3.14159109e+00 1.67157886e+00 1.26808912e+00 3.03760004e+00 4.52601028e+00 -1.57117757e+00 3.14169259e+00 -3.14150120e+00 -2.60311319e+00 1.57116387e+00 -2.47861420e-04 1.57058618e+00 -3.14205245e+00 -1.45907110e+00 1.49920168e+00 -3.14258203e+00 2.24954941e+00 3.14089226e+00 2.31623196e+00 1.73640169e+00 -1.90585342e+00 1.57122724e+00 4.81197223e-04 1.57040982e+00 1.25620078e-04 1.99872783e-04 2.91425441e+00 -1.57087245e+00 -3.14171777e+00 4.70559014e+00 -1.62681016e+00 -1.57072692e+00 -1.67624818e+00 1.57077717e+00 3.14154362e+00 -1.57068719e+00 1.01572622e-01 -2.34815004e+00 1.24491232e-01 -7.93185802e-01 -1.24807385e-01 -1.57067030e+00 -7.70794134e-01 -1.57187190e+00 -1.68257370e+00 -1.57100213e+00 3.14145999e+00 -1.57074635e+00 2.63671397e-04 1.57075652e+00 3.14153937e+00 1.56965286e+00 -1.39555195e+00 1.57097044e+00 3.29895139e+00 -2.29971702e+00 1.16253943e+00 3.98308593e+00 -1.16255688e+00 -1.57103592e+00 1.57620918e+00 -1.57094574e+00 -3.14272973e+00 9.74049853e-05 -6.21373498e-01 1.59048343e+00 -2.19363512e+00 7.37414735e-04 -1.67950101e+00 1.57056078e+00 -2.99204473e+00 5.86637308e-04 -1.42414654e+00 1.83931801e-04 -1.20647926e+00 -1.64186342e+00 -1.99591549e+00 -1.57132417e+00 4.49491910e+00 1.57131554e+00 4.23263392e-01 -1.24028489e+00 2.52787736e+00 -7.17546559e-04 1.69549437e+00 3.38970668e-04 -9.40089106e-01 -1.57048103e+00 4.46045167e-01 -3.14154990e+00 -3.98644286e-01 -1.51444144e+00 2.45063101e-01 -1.26998107e+00 -4.53406179e-01] VQE eigenvalue: -193.99995290919352 VQE result: -79.99995290919352 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f400>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ecb0>} 3.141544E+00 -1.570687E+00 1.015726E-01 -2.348150E+00 1.244912E-01 -7.931858E-01 -1.248074E-01 -1.570670E+00 -7.707941E-01 -1.571872E+00 -1.682574E+00 -1.571002E+00 3.141460E+00 -1.570746E+00 2.636714E-04 1.570757E+00 3.141539E+00 1.569653E+00 -1.395552E+00 1.570970E+00 3.298951E+00 -2.299717E+00 1.162539E+00 3.983086E+00 -1.162557E+00 -1.571036E+00 1.576209E+00 -1.570946E+00 -3.142730E+00 9.740499E-05 -6.213735E-01 1.590483E+00 -2.193635E+00 7.374147E-04 -1.679501E+00 1.570561E+00 -2.992045E+00 5.866373E-04 -1.424147E+00 1.839318E-04 -1.206479E+00 -1.641863E+00 -1.995915E+00 -1.571324E+00 4.494919E+00 1.571316E+00 4.232634E-01 -1.240285E+00 2.527877E+00 -7.175466E-04 1.695494E+00 3.389707E-04 -9.400891E-01 -1.570481E+00 4.460452E-01 -3.141550E+00 -3.986443E-01 -1.514441E+00 2.450631E-01 -1.269981E+00 -4.534062E-01 fev:6045 E => -209.999768925363164 Normal return from subroutine COBYLA NFVALS = 6045 F =-2.099998E+02 MAXCV = 0.000000E+00 X = 1.570803E+00 1.659383E-04 7.095744E-01 -3.094079E-01 3.360395E+00 -2.328897E+00 1.570562E+00 -3.141645E+00 -2.218672E-04 -9.308095E-01 -1.570900E+00 -1.608904E-05 -2.392963E+00 1.731553E+00 3.141439E+00 1.616868E+00 2.929054E-01 -2.087538E-02 -3.952599E-01 3.144273E+00 2.884584E+00 5.988499E-01 -1.570514E+00 3.141273E+00 4.134943E-04 -4.035577E-01 1.571130E+00 3.141141E+00 1.286245E+00 1.452558E+00 Classical optimization exited with an error index: 1 fev:6045 E => -209.9997689253631 Finnished. VQE Total time: 59.90 s fev/s: 100.91 VQE solution parameters: [ 1.57080321e+00 1.65938349e-04 7.09574396e-01 -3.09407901e-01 3.36039519e+00 -2.32889721e+00 1.57056234e+00 -3.14164531e+00 -2.21867239e-04 -9.30809517e-01 -1.57089953e+00 -1.60890373e-05 -2.39296334e+00 1.73155317e+00 3.14143873e+00 1.61686849e+00 2.92905448e-01 -2.08753850e-02 -3.95259858e-01 3.14427317e+00 2.88458412e+00 5.98849941e-01 -1.57051352e+00 3.14127273e+00 4.13494345e-04 -4.03557733e-01 1.57112950e+00 3.14114077e+00 1.28624457e+00 1.45255783e+00 -3.03691849e-04 -7.37630406e-01 1.57095823e+00 -2.88606420e+00 1.57057564e+00 -1.58420447e-04 -1.57110620e+00 -2.98135416e+00 4.00387987e-01 1.45790063e+00 4.00537505e-01 4.82538469e+00 -1.57059849e+00 2.39915727e+00 -1.57043684e+00 -3.14192398e+00 -1.57081596e+00 -7.99206490e-05 4.71236442e+00 3.14082246e+00 -1.57057568e+00 1.89792288e-04 1.57067391e+00 1.47294490e-01 6.04634893e-01 -3.63672947e-01 -3.74642660e+00 -3.50490763e+00 1.57109547e+00 1.28409532e+00 4.71265960e+00 3.14176528e+00 1.57105188e+00 -3.14204487e+00 3.14179372e+00 2.84083809e+00 1.42101502e+00 5.38528312e-01 3.14133334e+00 4.99171453e-01 -1.57150510e+00 2.29102174e+00 -3.14136798e+00 6.77486489e-02 -1.67972086e+00 -2.70711323e+00 -1.57088947e+00 -7.59881484e-02 1.27772964e+00 -4.21324067e-01 1.17520799e+00 -2.54531925e+00 -1.35976009e+00 7.61141762e-01 6.13075368e-04 -7.52309807e-02 1.57045747e+00 -1.18177611e+00 -2.33678918e-04 -1.26289130e+00 -1.45732146e+00 -2.72526808e+00 1.57099040e+00 -4.53854300e+00 9.01420620e-01 -7.79482030e-02] VQE eigenvalue: -209.9997689253631 VQE result: -95.9997689253631 Solution: -3.036918E-04 -7.376304E-01 1.570958E+00 -2.886064E+00 1.570576E+00 -1.584204E-04 -1.571106E+00 -2.981354E+00 4.003880E-01 1.457901E+00 4.005375E-01 4.825385E+00 -1.570598E+00 2.399157E+00 -1.570437E+00 -3.141924E+00 -1.570816E+00 -7.992065E-05 4.712364E+00 3.140822E+00 -1.570576E+00 1.897923E-04 1.570674E+00 1.472945E-01 6.046349E-01 -3.636729E-01 -3.746427E+00 -3.504908E+00 1.571095E+00 1.284095E+00 4.712660E+00 3.141765E+00 1.571052E+00 -3.142045E+00 3.141794E+00 2.840838E+00 1.421015E+00 5.385283E-01 3.141333E+00 4.991715E-01 -1.571505E+00 2.291022E+00 -3.141368E+00 6.774865E-02 -1.679721E+00 -2.707113E+00 -1.570889E+00 -7.598815E-02 1.277730E+00 -4.213241E-01 1.175208E+00 -2.545319E+00 -1.359760E+00 7.611418E-01 6.130754E-04 -7.523098E-02 1.570457E+00 -1.181776E+00 -2.336789E-04 -1.262891E+00 -1.457321E+00 -2.725268E+00 1.5 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... 70990E+00 -4.538543E+00 9.014206E-01 -7.794820E-02 optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f370>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4dfc0>} fev:7033 E => -193.99978443382884 Normal return from subroutine COBYLA NFVALS = 7033 F =-1.939998E+02 MAXCV = 0.000000E+00 X = 1.570620E+00 -3.141631E+00 2.948084E+00 7.766110E-01 1.570936E+00 3.141376E+00 6.820945E-04 -2.769292E-01 1.570663E+00 9.660185E-05 2.281037E-02 2.180982E+00 1.571025E+00 3.141105E+00 1.570780E+00 9.536048E-05 4.079733E+00 1.888411E+00 -3.141351E+00 -7.239361E-01 -1.196411E-03 -2.716358E+00 -1.534511E+00 -1.583714E+00 1.571015E+00 -3.707416E-04 -8.605654E-01 1.407815E+00 1.570507E+00 3.352015E-04 Classical optimization exited with an error index: 1 fev:7033 E => -193.9997844338288 Finnished. VQE Total time: 70.02 s fev/s: 100.45 VQE solution parameters: [ 1.57062047e+00 -3.14163130e+00 2.94808385e+00 7.76610967e-01 1.57093639e+00 3.14137588e+00 6.82094465e-04 -2.76929188e-01 1.57066271e+00 9.66018474e-05 2.28103702e-02 2.18098245e+00 1.57102550e+00 3.14110464e+00 1.57077972e+00 9.53604840e-05 4.07973296e+00 1.88841068e+00 -3.14135147e+00 -7.23936146e-01 -1.19641088e-03 -2.71635834e+00 -1.53451052e+00 -1.58371416e+00 1.57101458e+00 -3.70741623e-04 -8.60565435e-01 1.40781515e+00 1.57050670e+00 3.35201483e-04 -1.57107582e+00 3.14111997e+00 -1.57112597e+00 1.47495751e+00 -1.57083908e+00 -1.71092717e-01 -4.39386521e+00 1.37661494e+00 1.25186193e+00 1.37656981e+00 -1.40369964e+00 4.19375327e-01 -1.73765303e+00 4.00470149e-01 -1.57083257e+00 -3.04529688e+00 1.57094946e+00 -9.13401560e-01 -1.57049768e+00 -3.14154104e+00 -1.57086035e+00 -2.71993431e-04 -1.57078668e+00 3.14170120e+00 4.71226798e+00 -1.60763263e+00 -1.57113416e+00 1.44283752e+00 1.57045248e+00 -8.44253494e-01 1.57105584e+00 4.87401860e-01 1.57060514e+00 1.16775450e+00 -3.73400416e-05 -3.78857642e-01 5.15978425e-04 -1.11499789e+00 -1.57050588e+00 2.45309789e+00 3.14137189e+00 1.25514405e+00 -1.55715930e+00 -3.16329047e+00 -3.14205695e+00 2.50941852e+00 3.14137228e+00 -2.61288041e-01 1.31616305e+00 7.86995309e-01 -1.57083611e+00 -3.83383919e+00 1.56996272e+00 -2.77130262e+00 -1.55789688e+00 -2.05135327e+00 -3.14215406e+00 3.87440533e-01 -1.69405110e+00 -1.71760524e+00 -3.14189506e+00 -1.50319664e-01 3.14130542e+00 -8.84040131e-02 1.43302781e+00 -1.94532803e+00] VQE eigenvalue: -193.9997844338288 VQE result: -79.99978443382881 Solution: -1.571076E+00 3.141120E+00 -1.571126E+00 1.474958E+00 -1.570839E+00 -1.710927E-01 -4.393865E+00 1.376615E+00 1.251862E+00 1.376570E+00 -1.403700E+00 4.193753E-01 -1.737653E+00 4.004701E-01 -1.570833E+00 -3.045297E+00 1.570949E+00 -9.134016E-01 -1.570498E+00 -3.141541E+00 -1.570860E+00 -2.719934E-04 -1.570787E+00 3.141701E+00 4.712268E+00 -1.607633E+00 -1.571134E+00 1.442838E+00 1.570452E+00 -8.442535E-01 1.571056E+00 4.874019E-01 1.570605E+00 1.167755E+00 -3.734004E-05 -3.788576E-01 5.159784E-04 -1.114998E+00 -1.570506E+00 2.453098E+00 3.141372E+00 1.255144E+00 -1.557159E+00 -3.163290E+00 -3.142057E+00 2.509419E+00 3.141372E+00 -2.612880E-01 1.316163E+00 7.869953E-01 -1.570836E+00 -3.833839E+00 1.569963E+00 -2.771303E+00 -1.557897E+00 -2.051353E+00 -3.142154E+00 3.874405E-01 -1.694051E+00 -1.717605E+00 -3.141895E+00 -1.503197E-01 3.1 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) 41305E+00 -8.840401E-02 1.433028E+00 -1.945328E+00 Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4fd90>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e050>} fev:5259 E => -209.99996476231684 Normal return from subroutine COBYLA NFVALS = 5259 F =-2.100000E+02 MAXCV = 0.000000E+00 X = 1.570779E+00 1.019831E+00 1.570743E+00 1.570497E+00 4.712580E+00 3.141588E+00 3.141629E+00 -9.950211E-01 1.570476E+00 3.141656E+00 3.141564E+00 -2.794825E-01 1.570969E+00 -2.502917E-04 1.816434E-04 3.340561E+00 1.570982E+00 3.141404E+00 -3.343778E+00 -1.502624E+00 2.511906E+00 -1.116171E+00 -1.570730E+00 3.141777E+00 2.333116E+00 -1.189985E+00 9.105090E-05 2.115612E+00 -1.302088E+00 1.120031E+00 Classical optimization exited with an error index: 1 fev:5259 E => -209.99996476231684 Finnished. VQE Total time: 52.18 s fev/s: 100.78 VQE solution parameters: [ 1.57077862e+00 1.01983099e+00 1.57074301e+00 1.57049703e+00 4.71257984e+00 3.14158762e+00 3.14162899e+00 -9.95021090e-01 1.57047576e+00 3.14165596e+00 3.14156437e+00 -2.79482455e-01 1.57096894e+00 -2.50291721e-04 1.81643421e-04 3.34056057e+00 1.57098248e+00 3.14140424e+00 -3.34377757e+00 -1.50262358e+00 2.51190606e+00 -1.11617128e+00 -1.57073020e+00 3.14177732e+00 2.33311636e+00 -1.18998462e+00 9.10508995e-05 2.11561197e+00 -1.30208787e+00 1.12003069e+00 -1.57036882e+00 3.90687295e-04 1.57086282e+00 -1.02163757e+00 -2.59086697e+00 2.45267390e+00 1.62099578e-02 1.30654199e+00 3.15773555e+00 1.83478108e+00 -3.12671062e+00 3.05806816e+00 1.47643147e-02 8.32409445e-02 -2.47900827e-01 -3.46575962e+00 2.47901759e-01 -2.81741782e+00 -1.57056248e+00 -2.01379271e-01 1.57107973e+00 -3.14154435e+00 1.57074345e+00 -5.79734932e-01 1.57057360e+00 2.37040053e+00 1.57076597e+00 3.14150371e+00 1.57070999e+00 2.19128712e-05 1.57050161e+00 -1.27412802e+00 -1.57095768e+00 1.90327301e+00 1.40236609e-04 9.74287292e-01 -3.14162842e+00 2.34841406e+00 1.57075722e+00 1.94715725e+00 3.14146996e+00 2.27770673e+00 1.57067054e+00 8.09102090e-01 -2.04793492e-04 -2.33587422e+00 1.57042238e+00 -9.77637824e-01 3.14191528e+00 -4.44444278e-01 1.55710857e+00 -2.57228321e+00 -1.83247859e+00 3.84883126e+00 -3.14010248e+00 1.62289437e+00 1.84282494e+00 1.11544689e+00 1.57075947e+00 -3.13548090e+00 -1.13709646e+00 1.72307621e+00 3.14210425e+00 2.59134405e+00 1.57171799e+00 -2.22335179e-01] VQE eigenvalue: -209.99996476231684 VQE result: -95.99996476231684 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: -1.570369E+00 3.906873E-04 1.570863E+00 -1.021638E+00 -2.590867E+00 2.452674E+00 1.620996E-02 1.306542E+00 3.157736E+00 1.834781E+00 -3.126711E+00 3.058068E+00 1.476431E-02 8.324094E-02 -2.479008E-01 -3.465760E+00 2.479018E-01 -2.817418E+00 -1.570562E+00 -2.013793E-01 1.571080E+00 -3.141544E+00 1.570743E+00 -5.797349E-01 1.570574E+00 2.370401E+00 1.570766E+00 3.141504E+00 1.570710E+00 2.191287E-05 1.570502E+00 -1.274128E+00 -1.570958E+00 1.903273E+00 1.402366E-04 9.742873E-01 -3.141628E+00 2.348414E+00 1.570757E+00 1.947157E+00 3.141470E+00 2.277707E+00 1.570671E+00 8.091021E-01 -2.047935E-04 -2.335874E+00 1.570422E+00 -9.776378E-01 3.141915E+00 -4.444443E-01 1.557109E+00 -2.572283E+00 -1.832479E+00 3.848831E+00 -3.140102E+00 1.622894E+00 1.842825E+00 1.115447E+00 1.570759E+00 -3.135481E+00 -1.137096E+00 1.723076E+00 3.1[<function VQE.run.<locals>.objective_function at 0x76957cd4f7f0>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d7e0>} 42104E+00 2.591344E+00 1.571718E+00 -2.223352E-01 fev:6506 E => -193.99983333578456 Normal return from subroutine COBYLA NFVALS = 6506 F =-1.939998E+02 MAXCV = 0.000000E+00 X =-1.570731E+00 -3.377477E-01 -1.570629E+00 1.571642E+00 4.712542E+00 3.141623E+00 -1.920308E+00 -1.440560E+00 2.537765E+00 1.195406E+00 -1.570737E+00 -2.463834E-04 1.570784E+00 -3.141545E+00 1.570739E+00 4.712347E+00 1.570838E+00 -1.570834E+00 -1.570966E+00 1.739188E-04 -1.571057E+00 3.572214E-05 -6.283402E+00 2.843350E+00 1.570427E+00 -3.141307E+00 1.574278E+00 -1.576433E+00 -1.566106E+00 1.557241E+00 4.712154E+00 -3.141788E+00 -1.570934E+00 -1.471997E+00 -1.908748E+00 4.532317E-01 1.571068E+00 -1.923294E+00 -1.570944E+00 -2.162549E-04 1.570747E+00 -5.708218E-01 1.570897E+00 -3.502853E-01 4.724530E-01 -1.570641E+00 4.712516E+00 3.141454E+00 -4.724870E-01 -1.570542E+00 4.712286E+00 -3.264063E+00 -1.064628E+00 -1.097990E-01 2.076782E+00 Classical optimization exited with an error index: 1 fev:6506 E => -193.99983333578456 Finnished. VQE Total time: 62.13 s fev/s: 104.72 VQE solution parameters: [-1.57073060e+00 -3.37747681e-01 -1.57062897e+00 1.57164247e+00 4.71254202e+00 3.14162316e+00 -1.92030842e+00 -1.44055961e+00 2.53776502e+00 1.19540606e+00 -1.57073684e+00 -2.46383383e-04 1.57078444e+00 -3.14154453e+00 1.57073926e+00 4.71234744e+00 1.57083792e+00 -1.57083411e+00 -1.57096571e+00 1.73918757e-04 -1.57105657e+00 3.57221433e-05 -6.28340234e+00 2.84334970e+00 1.57042666e+00 -3.14130678e+00 1.57427813e+00 -1.57643318e+00 -1.56610609e+00 1.55724089e+00 4.71215395e+00 -3.14178814e+00 -1.57093427e+00 -1.47199724e+00 -1.90874774e+00 4.53231658e-01 1.57106812e+00 -1.92329397e+00 -1.57094400e+00 -2.16254859e-04 1.57074679e+00 -5.70821818e-01 1.57089673e+00 -3.50285292e-01 4.72453028e-01 -1.57064142e+00 4.71251637e+00 3.14145416e+00 -4.72487029e-01 -1.57054168e+00 4.71228590e+00 -3.26406266e+00 -1.06462846e+00 -1.09798995e-01 2.07678236e+00 3.03203631e+00 1.86085302e+00 -1.57422836e+00 -1.57111390e+00 -5.71561521e-05 -1.28084048e+00 1.57592407e+00 -1.57075016e+00 -2.78717526e+00 7.78912956e-05 -9.41004829e-01 -3.14130922e+00 4.07591437e-01 1.69314457e+00 2.64671171e+00 -1.36128960e+00 8.46193762e-01 8.05921268e-05 -1.84999112e+00 3.30683350e-04 -1.86216840e+00 4.71261431e+00 -1.17156942e+00 -1.57071734e+00 -8.36311171e-01 1.70666530e-04 -4.49674086e-01 -5.26002759e-04 7.30206122e-01 -1.57098696e+00 3.80577506e+00 2.88136583e-04 -6.88500988e-01 1.56510611e+00 3.34804659e+00 1.55724271e+00 5.22320861e-02 -4.67559014e-04 2.20302376e+00 1.56940644e+00 4.56053547e-02] VQE eigenvalue: -193.99983333578456 VQE result: -79.99983333578456 Solution: 5 x00 = 1, x01 = 0, x02 = 0, 0 1.860853E+00 -1.574228E+00 -1.571114E+00 -5.715615E-05 -1.280840E+00 1.575924E+00 -1.570750E+00 -2.787175E+00 7.789130E-05 -9.410048E-01 -3.141309E+00 4.075914E-01 1.693145E+00 2.646712E+00 -1.361290E+00 8.461938E-01 8.059213E-05 -1.849991E+00 3.306833E-04 -1.862168E+00 4.712614E+00 -1.171569E+00 -1.570717E+00 -8.363112E-01 1.706665E-04 -4.496741E-01 -5.260028E-04 7.302061E-01 -1.570987E+00 3.805775E+00 2.881366E-04 -6.885010E-01 1.565106E+00 3.348047E+00 1.557243E+00 5.223209E-02 -4.675590E-04 2.203024E+00 1.569406E+00 4.560535E-02 x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e830>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fd00>} Classical optimization exited with an error index: 1 fev:8593 E => -209.99948804494534 Finnished. VQE Total time: 81.81 s fev/s: 105.04 VQE solution parameters: [ 1.57110522e+00 3.14174712e+00 -1.57785183e+00 -1.83664726e-02 1.52830239e+00 -1.89408017e-02 -3.54851281e-01 -3.02892422e+00 3.12732541e+00 2.79666765e-01 -2.82147873e+00 -7.82972222e-03 2.01945906e+00 2.46444829e+00 1.57037259e+00 4.37592226e-04 2.43569078e+00 5.93348014e-02 1.57101530e+00 3.14136544e+00 -1.54863606e+00 1.73883474e+00 -1.52025347e+00 3.08484516e+00 -1.57058523e+00 3.14176986e+00 -3.14175769e+00 -9.01642443e-01 1.57076083e+00 -3.91962238e-07 -6.00320758e-01 -1.85692582e+00 -1.57078655e+00 -1.46308240e+00 1.57077281e+00 2.72225039e+00 1.57083780e+00 -4.14350070e-02 1.57081972e+00 5.29341558e-04 -1.57081150e+00 7.69817293e-04 -1.57037771e+00 3.14325229e+00 -1.57050162e+00 -9.15585563e-01 -1.57035095e+00 -9.26334774e-03 -1.57041168e+00 4.13157898e-02 -1.57105469e+00 -1.53821090e+00 1.57059265e+00 -5.50703254e-02 1.57068032e+00 8.52957876e-01 -8.05094609e-01 -1.26175970e+00 8.04844831e-01 -1.26211316e+00 1.57113645e+00 -8.46567606e-01 1.57115673e+00 -2.87630753e+00 2.59835946e-05 -1.29403000e+00 4.69515145e-02 -1.32036449e+00 -1.92322196e+00 1.60011467e+00 -1.55638815e+00 1.96793505e-01 -1.89071947e+00 -1.59970645e+00 7.92327407e-01 -4.03691907e+00 -5.90569085e-04 -2.85466332e+00 8.66611037e-01 2.41781209e+00 -3.14172557e+00 -4.64178430e-01 -1.40313706e+00 3.59027954e+00 7.60541301e-02 1.57885345e+00 4.34234981e-04 -3.33113746e+00 -1.57070402e+00 1.82243590e+00 3.14154991e+00 3.68750779e+00 1.41065671e+00 2.18242461e+00 -2.00005517e-02 1.22150465e+00] VQE eigenvalue: -209.99948804494534 VQE result: -95.99948804494534 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4cc10>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e950>} Normal return from subroutine COBYLA NFVALS = 8593 F =-2.099995E+02 MAXCV = 0.000000E+00 X = 1.571105E+00 3.141747E+00 -1.577852E+00 -1.836647E-02 1.528302E+00 -1.894080E-02 -3.548513E-01 -3.028924E+00 3.127325E+00 2.796668E-01 -2.821479E+00 -7.829722E-03 2.019459E+00 2.464448E+00 1.570373E+00 4.375922E-04 2.435691E+00 5.933480E-02 1.571015E+00 3.141365E+00 -1.548636E+00 1.738835E+00 -1.520253E+00 3.084845E+00 -1.570585E+00 3.141770E+00 -3.141758E+00 -9.016424E-01 1.570761E+00 -3.919622E-07 -6.003208E-01 -1.856926E+00 -1.570787E+00 -1.463082E+00 1.570773E+00 2.722250E+00 1.570838E+00 -4.143501E-02 1.570820E+00 5.293416E-04 -1.570811E+00 7.698173E-04 -1.570378E+00 3.143252E+00 -1.570502E+00 -9.155856E-01 -1.570351E+00 -9.263348E-03 -1.570412E+00 4.131579E-02 -1.571055E+00 -1.538211E+00 1.570593E+00 -5.507033E-02 1.570680E+00 8.529579E-01 -8.050946E-01 -1.261760E+00 8.048448E-01 -1.262113E+00 1.571136E+00 -8.465676E-01 1.571157E+00 -2.876308E+00 2.598359E-05 -1.294030E+00 4.695151E-02 -1.320364E+00 -1.923222E+00 1.600115E+00 90719E+00 -1.599706E+00 7.923274E-018fev:3 E => 17.989689907311373 -4.036919E+00 -5.905691E-04 -2.854663E+00 8.666110E-01 2.417812E+00 -3.141726E+00 -4.641784E-01 -1.403137E+00 3.590280E+00 7.605413E-02 1.578853E+00 4.342350E-04 -3.331137E+00 -1.570704E+00 1.822436E+00 3.141550E+00 3.687508E+00 1.410657E+00 2.182425E+00 -2.000055E-02 1.221505E+00 fev:10529 E => -189.99926352608807 Normal return from subroutine COBYLA NFVALS =10529 F =-1.899993E+02 MAXCV = 0.000000E+00 X =-1.570732E+00 -3.141643E+00 2.740677E+00 -8.015685E-01 -3.141698E+00 1.070997E+00 3.141539E+00 -1.408540E+00 -3.856946E-02 1.837107E-01 3.805783E-04 -2.694098E+00 2.927577E+00 -1.133216E+00 1.621915E+00 -9.561912E-05 2.484692E+00 3.864168E-02 -1.456128E+00 -1.822603E+00 Classical optimization exited with an error index: 1 fev:10529 E => -189.99926352608807 Finnished. VQE Total time: 99.94 s fev/s: 105.35 VQE solution parameters: [-1.57073239e+00 -3.14164324e+00 2.74067728e+00 -8.01568524e-01 -3.14169825e+00 1.07099709e+00 3.14153921e+00 -1.40853996e+00 -3.85694602e-02 1.83710738e-01 3.80578344e-04 -2.69409760e+00 2.92757744e+00 -1.13321630e+00 1.62191451e+00 -9.56191192e-05 2.48469172e+00 3.86416850e-02 -1.45612823e+00 -1.82260349e+00 4.71228980e+00 -6.77345430e-05 -3.13862852e+00 -1.39477225e+00 -1.57123037e+00 -3.14160914e+00 -1.41844972e+00 -3.14775895e+00 6.37896727e-01 -1.56502678e+00 1.57082138e+00 -6.77992291e-05 1.57130829e+00 4.56774605e-01 -1.57095059e+00 3.14175514e+00 -1.57082981e+00 3.11672188e-04 1.57083361e+00 2.63638734e-04 4.71252545e+00 3.14169649e+00 4.71221237e+00 3.14149780e+00 1.57070577e+00 -1.94278516e-01 1.57076724e+00 -3.11161394e+00 -1.57087984e+00 -3.14115598e+00 -1.57068139e+00 -1.45200532e+00 1.72129725e+00 -1.31855269e+00 1.72146108e+00 1.82596319e+00 4.71245269e+00 -4.03102136e-02 1.57075140e+00 -8.24689656e-03 -1.57067086e+00 -3.78787792e+00 4.71204689e+00 7.51963199e-01 -1.93912077e-04 -1.11142232e+00 1.57106966e+00 -1.89788455e+00 -1.57081010e+00 -6.71971128e-02 -1.60991190e+00 1.44525982e+00 -1.57081224e+00 -2.19539554e+00 1.48094473e+00 9.55782896e-01 5.10315410e-02 2.57186539e+00 -9.14478164e-01 -4.87712287e-01 1.32091336e+00 -3.25156520e+00 3.14146441e+00 -3.34952241e+00 -1.57060713e+00 6.99429912e-01 -3.14154626e+00 1.16796942e+00 3.29396983e+00 -4.06093781e-01 -1.57438428e+00 -2.96796082e+00 -3.14182247e+00 1.72091075e+00 -1.84578404e+00 1.63858330e+00] VQE eigenvalue: -189.99926352608807 VQE result: -75.99926352608807 Solution: 7 x00 = 0, x01 = 1, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 1, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4ff40>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4eb00>} 4.712290E+00 -6.773454E-05 -3.138629E+00 -1.394772E+00 -1.571230E+00 -3.141609E+00 -1.418450E+00 -3.147759E+00 6.378967E-01 -1.565027E+00 1.570821E+00 -6.779923E-05 1.571308E+00 4.567746E-01 -1.570951E+00 3.141755E+00 -1.570830E+00 3.116722E-04 1.570834E+00 2.636387E-04 4.712525E+00 3.141696E+00 4.712212E+00 3.141498E+00 1.570706E+00 -1.942785E-01 1.570767E+00 -3.111614E+00 -1.570880E+00 -3.141156E+00 -1.570681E+00 -1.452005E+00 1.721297E+00 -1.318553E+00 1.721461E+00 1.825963E+00 4.712453E+00 -4.031021E-02 1.570751E+00 -8.246897E-03 -1.570671E+00 -3.787878E+00 4.712047E+00 7.519632E-01 -1.939121E-04 -1.111422E+00 1.571070E+00 -1.897885E+00 -1.570810E+00 -6.719711E-02 -1.609912E+00 1.445260E+00 -1.570812E+00 -2.195396E+00 1.480945E+00 9.557829E-01 5.103154E-02 2.571865E+00 -9.144782E-01 -4.877123E-01 41464E+00 -3.349522E+00 -1.570607E+001fev:3 E => -11.86363472816372 6.994299E-01 -3.141546E+00 1.167969E+00 3.293970E+00 -4.060938E-01 -1.574384E+00 -2.967961E+00 -3.141822E+00 1.720911E+00 -1.845784E+00 1.638583E+00 fev:5306 E => -209.99959878974275 Normal return from subroutine COBYLA NFVALS = 5306 F =-2.099996E+02 MAXCV = 0.000000E+00 X =-1.570747E+00 -3.141622E+00 1.569428E+00 3.139399E+00 1.764348E+00 -1.335163E+00 -1.570707E+00 1.020225E-04 -3.357179E+00 3.635474E+00 3.961800E+00 -1.453549E-04 -6.764032E-04 -7.859805E-01 -4.332249E-04 8.414945E-01 -3.144065E+00 -5.238371E-01 7.448923E-05 1.514497E+00 1.810270E+00 -2.013177E+00 -1.571220E+00 -3.141725E+00 1.734213E+00 -2.971554E+00 2.701079E+00 4.901517E-02 -3.138427E+00 -5.373953E-01 Classical optimization exited with an error index: 1 fev:5306 E => -209.99959878974275 Finnished. VQE Total time: 50.53 s fev/s: 105.00 VQE solution parameters: [-1.57074675e+00 -3.14162235e+00 1.56942753e+00 3.13939854e+00 1.76434795e+00 -1.33516282e+00 -1.57070662e+00 1.02022543e-04 -3.35717907e+00 3.63547398e+00 3.96180049e+00 -1.45354851e-04 -6.76403222e-04 -7.85980541e-01 -4.33224920e-04 8.41494540e-01 -3.14406539e+00 -5.23837104e-01 7.44892297e-05 1.51449675e+00 1.81027050e+00 -2.01317677e+00 -1.57122021e+00 -3.14172529e+00 1.73421263e+00 -2.97155416e+00 2.70107856e+00 4.90151748e-02 -3.13842657e+00 -5.37395259e-01 5.51945234e-01 1.06892746e+00 -1.57089244e+00 4.15820130e+00 -1.57115822e+00 -5.24130691e-02 -1.57122793e+00 1.82216909e+00 -1.57094364e+00 -1.03181703e-01 1.57066375e+00 1.48185337e-04 -1.57081604e+00 3.14172940e+00 -1.57091224e+00 -2.43819810e-04 1.57059161e+00 -7.78669797e-05 1.57074462e+00 -2.95552935e-04 -1.57087527e+00 3.14131730e+00 1.57068101e+00 -1.30717846e+00 1.57046525e+00 -7.87732605e-01 -1.57037771e+00 2.19584818e-02 1.57062469e+00 1.55923984e-04 -1.57065941e+00 3.14136684e+00 1.57071488e+00 3.63705054e+00 6.64229334e-05 1.89633708e+00 -1.33920139e+00 1.20012325e+00 3.14139168e+00 3.75417940e+00 -1.76001674e+00 -3.90651284e-01 7.50666910e-01 1.06008058e+00 -1.57088172e+00 2.94285028e+00 1.57022802e+00 -1.73299233e+00 1.56799312e+00 -1.99940151e+00 -1.57133746e+00 6.82074093e-01 1.14154173e+00 5.18233043e-01 3.14185651e+00 7.41585518e-01 -2.35260189e-01 8.20302853e-01 -2.01125343e+00 1.52142144e+00 1.57378047e+00 2.59163151e+00 1.31540325e+00 -1.21379432e+00 -3.14410588e+00 -3.83033203e+00] VQE eigenvalue: -209.99959878974275 VQE result: -95.99959878974275 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:COBYLA and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: 5.519452E-01 1.068927E+00 -1.570892E+00 4.158201E+00 -1.571158E+00 -5.241307E-02 -1.571228E+00 1.822169E+00 -1.570944E+00 -1.031817E-01 1.570664E+00 1.481853E-04 -1.570816E+00 3.141729E+00 -1.570912E+00 -2.438198E-04 1.570592E+00 -7.786698E-05 1.570745E+00 -2.955529E-04 -1.570875E+00 3.141317E+00 1.570681E+00 -1.307178E+00 1.570465E+00 -7.877326E-01 -1.570378E+00 2.195848E-02 1.570625E+00 1.559240E-04 -1.570659E+00 3.141367E+00 1.570715E+00 3.637051E+00 6.642293E-05 1.896337E+00 -1.339201E+00 1.200123E+00 3.141392E+00 3.754179E+00 -1.760017E+00 -3.906513E-01 7.506669E-01 1.060081E+00 -1.570882E+00 2.942850E+00 1.570228E+00 -1.732992E+00 1.567993E+00 -1.999402E+00 -1.571337E+00 6.820741E-01 1.141542E+00 5.182330E-01 3.141857E+00 7.415855E-01 -2.352602E-01 8.203029E-01 -2.011253E+00 1.521421E+00 1.573780E+00 2.591632E+00 1.3[<function VQE.run.<locals>.objective_function at 0x76957cd4cb80>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fac0>} 15403E+00 -1.213794E+00 -3.144106E+00 -3.830332E+00 Classical optimization exited with an error index: 2 fev:15000 E => -183.4924319524998 Finnished. VQE Total time: 143.45 s fev/s: 104.56 VQE solution parameters: [ 4.71215577e+00 3.14299029e+00 -5.54927552e-01 -6.67198064e-01 1.56952486e+00 3.14008068e+00 -2.18688491e-03 2.55453224e+00 -1.60097331e+00 -3.31568878e-03 9.36088750e-01 1.46636803e+00 -1.55752738e+00 -3.14317761e+00 2.67219471e-01 -9.26801672e-01 -3.14043361e+00 -1.13550717e+00 8.37186204e-05 -3.60399107e+00 -3.13889978e+00 3.96865264e+00 -4.55185968e-01 3.12778851e+00 -1.54073116e+00 -1.30332427e-03 4.70616308e-01 -3.40898260e+00 -2.03797026e+00 4.68526913e+00 1.57009977e+00 4.30129908e-06 1.57046827e+00 -7.92618586e-01 1.57044514e+00 1.31025953e-03 1.13102687e+00 9.59134658e-02 -2.01290427e+00 3.23540680e+00 1.57150816e+00 -2.23247632e+00 -1.57056950e+00 2.20813826e-02 1.57048417e+00 2.14025151e-01 1.57001741e+00 -3.14212405e+00 -1.57084727e+00 3.14144045e+00 1.56972074e+00 -1.54114414e-04 -1.57215256e+00 3.13963102e+00 -1.57117775e+00 3.14607737e+00 1.57255711e+00 -3.00763493e+00 -1.57045685e+00 3.14069820e+00 1.57124571e+00 1.10324106e+00 1.57159569e+00 -2.71272420e+00 4.07082036e-04 -1.47375089e-01 3.14244741e+00 6.71009773e-01 -1.57169156e+00 3.76612517e+00 -1.59281015e+00 -2.56175167e+00 -1.48806593e+00 -1.05151036e+00 -3.12925022e+00 -1.33792748e+00 1.72988897e+00 -1.02701713e+00 -1.57107305e+00 -1.03882951e+00 -1.56768102e+00 -5.24394684e-01 1.57210412e+00 -1.16815831e+00 4.25873179e+00 2.98111171e+00 3.41886969e-02 -9.26449147e-01 2.02450489e+00 -1.15337724e+00 1.54691661e+00 -6.11392532e-01 4.83665068e-04 -2.09004482e+00 1.99803071e+00 -3.32509600e+00] VQE eigenvalue: -183.4924319524998 VQE result: -69.4924319524998 Solution: Return from subroutine COBYLA because the MAXFUN limit has been reached. NFVALS =15000 F =-1.834924E+02 MAXCV = 0.000000E+00 X = 4.712156E+00 3.142990E+00 -5.549276E-01 -6.671981E-01 1.569525E+00 3.140081E+00 -2.186885E-03 2.554532E+00 -1.600973E+00 -3.315689E-03 9.360888E-01 1.466368E+00 -1.557527E+00 -3.143178E+00 2.672195E-01 9 x00 = 1, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 1, x33 = 0, {'method': 'COBYLA', 'tol': 0.001, 'options': {'maxiter': 15000, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fac0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4c670>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ff40>} -9.268017E-01 -3.140434E+00 -1.135507E+00 8.371862E-05 -3.603991E+00 -3.138900E+00 3.968653E+00 -4.551860E-01 3.127789E+00 -1.540731E+00 -1.303324E-03 4.706163E-01 -3.408983E+00 -2.037970E+00 4.685269E+00 1.570100E+00 4.301299E-06 1.570468E+00 -7.926186E-01 1.570445E+00 1.310260E-03 1.131027E+00 9.591347E-02 -2.012904E+00 3.235407E+00 1.571508E+00 -2.232476E+00 -1.570570E+00 2.208138E-02 1.570484E+00 2.140252E-01 1.570017E+00 -3.142124E+00 -1.570847E+00 3.141440E+00 1.569721E+00 -1.541144E-04 -1.572153E+00 3.139631E+00 -1.571178E+00 3.146077E+00 1.572557E+00 -3.007635E+00 -1.570457E+00 3.140698E+00 1.571246E+00 1.103241E+00 1.571596E+00 -2.712724E+00 4.070820E-04 -1.473751E-01 3.142447E+00 6.710098E-01 -1.571692E+00 3.766125E+00 -1.592810E+00 -2.561752E+00 -1.488066E+00 -1.051510E+00 -3.129250E+00 -1.337927E+00 1.729889E+00 -1.027017E+00 -1.571073E+00 -1.038830E+00 -1.567681E+00 -5.243947E-01 1.572104E+00 -1.168158E+00 4.258732E+00 2.981112E+00 3.418870E-02 -9.264491E-01 2.024505E+00 -1.153377E+00 1.546917E+00 -6.113925E-01 4.836651E-04 -2.090045E+00 1.998031E+00 -3.325096E+00 Optimization terminated successfully. Current function value: -210.000000 Iterations: 91 Function evaluations: 10476 Gradient evaluations: 108 fev:10476 E => -209.99999998907288 Finnished. VQE Total time: 94.59 s fev/s: 110.75 VQE solution parameters: [ 1.57079648e+00 -1.39718359e-06 -1.12453241e-01 -1.60642847e+00 -4.92399498e-02 -5.08200225e-01 1.57079622e+00 3.62857261e-08 4.39861058e-07 1.46625068e+00 1.57079594e+00 -4.35866363e-07 -1.57081496e+00 3.14154234e+00 2.45592077e-01 -1.79992425e+00 3.14148345e+00 2.92518117e+00 3.14159047e+00 1.40213248e+00 -1.63951165e-06 6.62112019e-01 2.91299498e+00 3.88028683e-05 -2.95669453e-05 -3.08638254e+00 1.63087892e-06 6.45408789e-01 3.14150697e+00 2.94206317e+00 8.40242425e-04 3.11894633e+00 -1.57079546e+00 3.25397072e+00 1.57079694e+00 -3.14158990e+00 1.57079704e+00 -2.39751057e-02 3.26583168e+00 7.58244414e-02 -3.01735363e+00 -7.58247642e-02 1.57079481e+00 -1.27006910e+00 -1.57079721e+00 2.90217374e+00 -1.57079582e+00 2.31585677e-06 -1.57079714e+00 3.14159547e+00 1.57079554e+00 3.63736444e-08 -1.57079273e+00 5.18726689e-06 -1.57079588e+00 3.14159226e+00 -1.57079553e+00 3.48628162e-07 1.57079575e+00 -1.01580288e-06 1.57079690e+00 1.01077078e-06 1.57079491e+00 -3.24641980e-06 4.18571812e-06 -3.45697820e-01 1.52778422e+00 -7.23493167e-01 -4.52196224e-06 -1.31744194e+00 -1.57079531e+00 -1.96841844e+00 3.15771423e-07 9.84244945e-01 -5.46620416e-05 -2.57713192e+00 1.51554478e+00 2.36716246e+00 4.71249865e+00 2.15162207e+00 1.57079567e+00 2.65813910e+00 1.57079358e+00 -6.82893449e-01 1.79939812e+00 -1.40983504e+00 1.57076754e+00 2.19590375e+00 1.57079802e+00 5.64178537e-01 1.57070908e+00 5.00609700e-01 -1.57163733e+00 1.00664288e+00 4.71638971e+00 2.61968949e+00] VQE eigenvalue: -209.99999998907293 VQE result: -95.99999998907293 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f1c0>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d090>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 79 Function evaluations: 10088 Gradient evaluations: 104 fev:10088 E => -209.99999999927755 Finnished. VQE Total time: 86.20 s fev/s: 117.03 VQE solution parameters: [ 1.57079614e+00 -3.14159236e+00 -5.16742667e-02 -1.44453860e+00 1.34156291e+00 2.14786192e+00 -1.57079585e+00 3.14159287e+00 -1.63403882e+00 -1.70955176e+00 1.61964128e+00 -2.36486048e+00 1.57079601e+00 -3.14159138e+00 -1.23985177e+00 1.27142187e+00 -4.71239053e+00 -9.90131635e-07 1.57079591e+00 -2.13472521e-07 -6.35003001e-01 -1.00882820e+00 1.57079730e+00 -1.86873289e-06 -4.89431612e-05 -2.86452523e+00 -1.57079610e+00 3.14159288e+00 -4.50422912e+00 -4.37909606e+00 3.14157430e+00 -2.90406857e+00 -1.57079632e+00 -5.12632832e-02 1.57079638e+00 3.14159326e+00 -1.57079574e+00 -1.84234033e+00 -1.57079521e+00 -1.50694211e+00 -1.57079730e+00 -2.83674087e-07 -1.57079632e+00 -1.50117068e+00 -1.57079673e+00 -1.66018904e+00 -1.57079561e+00 3.39737803e+00 -1.57079665e+00 -5.54447124e-01 1.57079588e+00 2.01580392e+00 4.71238934e+00 -5.68278044e-01 1.50185168e+00 2.14873558e+00 -1.63974113e+00 2.14875079e+00 1.57079705e+00 1.35089061e+00 -1.57079632e+00 2.00145041e-07 -1.57079638e+00 -3.14159406e+00 1.85183703e-06 -5.66015553e-01 2.13092465e+00 5.41509925e-02 -1.73140687e-06 -8.97477431e-01 1.43232049e+00 -1.56482330e+00 2.36364860e+00 -3.06335284e+00 -4.74992173e-07 -1.03089285e+00 -1.85346434e+00 -1.37663138e+00 2.56804287e-06 2.84716075e+00 -2.96059472e-07 -1.33270219e+00 -1.24920232e+00 2.80805688e+00 -3.35078511e-07 7.60796835e-01 1.57075169e+00 -7.03579900e-01 -2.40870777e-07 9.47756759e-01 -1.24496705e+00 -1.93319367e+00 -1.57077792e+00 -1.63720741e+00 1.56429342e+00 -7.62440928e-01] VQE eigenvalue: -209.9999999992776 VQE result: -95.9999999992776 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4fbe0>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e5f0>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 73 Function evaluations: 8536 Gradient evaluations: 88 fev:8536 E => -193.9999999950483 Finnished. VQE Total time: 77.91 s fev/s: 109.56 VQE solution parameters: [ 1.57079777e+00 -2.97772917e-07 4.77198537e-01 -6.05935808e-01 8.63209213e-01 -6.89199229e-03 1.57079608e+00 -3.14159282e+00 -3.14159178e+00 5.27979692e-01 -1.57079667e+00 8.51467040e-08 1.53319323e-01 5.44811683e-01 4.49245537e+00 3.14159037e+00 -1.33105330e-05 -1.41898540e+00 4.00120261e-01 3.14159223e+00 3.67134381e+00 3.14158350e+00 -3.14160180e+00 1.09259881e+00 1.78006888e+00 -3.87189280e+00 1.57079574e+00 3.14159335e+00 1.09623707e-06 6.84767891e-01 -1.57078657e+00 -3.14159224e+00 1.57079630e+00 -3.06263362e+00 1.57079687e+00 -1.97810238e-06 -1.57079746e+00 -3.13354993e+00 2.43886379e+00 1.23802372e+00 -2.43886435e+00 1.23801894e+00 -1.57082059e+00 -8.00033846e-02 -1.57077205e+00 -3.14167816e+00 -1.57079665e+00 1.28703147e-05 1.57079564e+00 2.62813094e-06 -1.57079595e+00 -1.35596902e-06 1.57079540e+00 9.03621638e-07 1.57079527e+00 -3.14159670e+00 -4.71239338e+00 -4.40416486e+00 -1.03461506e+00 1.99189240e-01 4.17620742e+00 3.34078341e+00 1.57079748e+00 -2.93416165e+00 2.51659519e-06 1.26502759e+00 -7.07612136e-01 1.33430423e+00 3.14159200e+00 8.80573341e-01 -1.57079455e+00 2.38366451e-01 5.96959460e-06 5.47476569e-01 -1.43981463e+00 -2.19261520e+00 -2.92166006e+00 1.81979546e+00 1.57079993e+00 -1.01620832e+00 1.97091849e+00 -2.88268549e+00 -1.04104468e+00 3.02793194e+00 -1.57079797e+00 -6.61014879e-01 -7.54348555e-01 -1.29797297e+00 4.54800437e-08 -1.63548453e+00 -4.71238726e+00 -2.01327698e+00 -3.60496782e-06 -2.69630167e+00 -1.18367510e+00 -1.07742727e+00] VQE eigenvalue: -193.9999999950483 VQE result: -79.99999999504831 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4c940>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4caf0>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 77 Function evaluations: 8730 Gradient evaluations: 90 fev:8730 E => -193.9999999994041 Finnished. VQE Total time: 76.50 s fev/s: 114.11 VQE solution parameters: [-1.57079660e+00 -3.14159300e+00 2.04685605e+00 -1.58961366e+00 1.57079332e+00 3.14159276e+00 -1.10501737e+00 2.82940912e+00 1.57082890e+00 -1.58940132e-06 -3.67769325e+00 1.91412200e+00 4.71238766e+00 3.14159286e+00 1.15852250e+00 -1.63187486e+00 1.57079722e+00 -4.92908023e-07 -2.66137941e+00 -2.60276034e+00 4.37923815e-01 -3.14159251e+00 -3.14159333e+00 -1.01527131e+00 -1.44311011e+00 1.79502162e+00 1.57079641e+00 1.36148488e-06 8.70704490e-06 2.05302592e+00 -1.57079191e+00 3.14159260e+00 -1.57079678e+00 1.48093703e+00 1.57079704e+00 2.66927845e-01 -4.71238825e+00 2.46076229e+00 1.57079600e+00 3.00924269e+00 1.57079789e+00 3.19253776e+00 -1.57079584e+00 -4.59137240e-01 -1.57079736e+00 -3.12292673e+00 1.57079520e+00 -1.96509077e+00 -1.57079670e+00 -3.40277016e+00 -1.57079678e+00 -1.79624787e-07 -1.57079557e+00 3.14159241e+00 1.57079579e+00 -3.14159515e+00 -1.57079714e+00 1.70172483e+00 1.39219547e+00 -2.30018283e-01 1.39219633e+00 2.30009438e-01 -1.57079683e+00 -6.53199443e-01 3.14159569e+00 -1.87250536e+00 2.39272432e-06 -1.76694837e+00 -5.54268414e-01 2.90641219e+00 3.14155986e+00 1.99880597e+00 -4.53958854e+00 -2.20936125e+00 -3.14159390e+00 1.78542656e+00 1.62675194e+00 5.21217203e-01 3.14159314e+00 1.92930635e+00 -1.97850935e+00 -2.60969565e+00 1.13287261e+00 -2.89392783e+00 -1.57079666e+00 -2.88625519e+00 -1.79316205e+00 2.16108144e+00 1.77258442e-07 -2.13191954e+00 -1.57079365e+00 9.80722913e-01 3.14159971e+00 3.14587733e-02 1.58752006e+00 1.53087452e-02] VQE eigenvalue: -193.9999999994041 VQE result: -79.99999999940411 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dd80>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e200>} Optimization terminated successfully. Current function value: -183.500000 Iterations: 84 Function evaluations: 9506 Gradient evaluations: 98 fev:9506 E => -183.4999999996745 Finnished. VQE Total time: 80.86 s fev/s: 117.56 VQE solution parameters: [ 1.57079574e+00 1.41543800e+00 1.57079654e+00 1.57079664e+00 1.57079574e+00 -9.53830574e-08 3.14159217e+00 -2.21901454e+00 -1.57079666e+00 -7.66343260e-08 1.64246889e+00 1.60838247e+00 1.57079449e+00 3.04930124e-07 -1.14492327e+00 1.38975676e+00 4.35177745e-01 1.06370402e-06 -3.45378520e+00 -1.26918985e+00 1.57079589e+00 -3.14159291e+00 -3.14159366e+00 2.11415554e+00 3.14159144e+00 -1.30517430e+00 -7.67649103e-07 1.77755993e+00 -3.14159340e+00 5.02005095e-01 -3.14159299e+00 -3.66416345e-01 1.57079644e+00 -2.53131070e+00 -2.98623464e+00 -9.60514424e-01 -1.54023184e-01 1.96500114e+00 2.98756934e+00 1.17659030e+00 -1.57079666e+00 2.95077958e+00 1.57079623e+00 1.68988571e+00 1.57079658e+00 -2.00290336e+00 1.57079653e+00 5.54089274e-07 -1.57079639e+00 2.50297857e-07 1.57079589e+00 -2.84265082e+00 -6.37540195e-07 -1.26387684e+00 -1.62145045e-08 1.52712630e+00 -1.94875619e-07 3.02127588e+00 -5.05233874e-07 -1.10273017e-01 -3.21672752e-07 -2.39709714e+00 -3.66252070e+00 3.14159450e+00 1.57079395e+00 1.81332423e+00 -3.14159381e+00 2.58740162e+00 1.57079516e+00 2.61957339e+00 3.14159055e+00 1.13751818e+00 1.60828561e+00 1.19613699e-01 1.19749907e-06 -1.95313329e+00 1.73550993e+00 -3.48150601e-01 2.00597422e+00 -2.79692164e-01 1.66216373e+00 -2.66798817e+00 -3.14159247e+00 2.72877860e+00 2.18599443e-07 2.52024220e+00 3.14159378e+00 1.04629002e+00 3.14159029e+00 -1.78451476e+00 -6.28318797e+00 2.00694107e+00 3.14158994e+00 1.75556929e+00 -5.20928449e-01 -5.01985201e-01] VQE eigenvalue: -183.49999999967466 VQE result: -69.49999999967466 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f250>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4c670>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 94 Function evaluations: 9991 Gradient evaluations: 103 fev:9991 E => -193.9999999962097 Finnished. VQE Total time: 93.26 s fev/s: 107.13 VQE solution parameters: [-1.57079689e+00 -3.14159216e+00 -1.54873079e+00 1.75641780e-01 3.14153371e+00 1.52230157e+00 -1.89342275e+00 -3.33054439e+00 1.57079503e+00 3.14159214e+00 1.20137820e-01 -1.29025004e-01 1.57078885e+00 -3.14159287e+00 3.62534600e+00 5.34007121e+00 2.13683844e+00 -2.85045608e+00 -1.57079569e+00 -1.32982855e-06 -2.96494082e+00 -2.11724419e+00 -3.05204544e+00 3.14148515e+00 4.08683659e+00 -6.28317542e+00 3.14156971e+00 -5.21845059e-01 -2.53638248e+00 -2.73831133e+00 4.71244766e+00 3.47524587e-05 -1.57079655e+00 -7.49863413e-01 -4.71239286e+00 -5.80039891e-05 1.57079139e+00 -3.14158770e+00 -1.57079726e+00 -5.11891543e-01 4.71240877e+00 -2.54803756e+00 4.71240732e+00 -5.78023821e-01 -1.57079580e+00 -2.73951542e+00 1.57079703e+00 9.19740594e-07 1.57079645e+00 -2.71728448e+00 4.71239032e+00 -2.99024350e+00 1.57079633e+00 -3.14159270e+00 1.57079749e+00 3.14160293e+00 1.57080035e+00 -3.14158303e+00 -1.57079384e+00 6.09714886e-07 -1.57079451e+00 2.65105204e-01 -1.57079785e+00 -5.58788391e+00 -6.28318824e+00 -2.65201269e+00 -1.57079791e+00 -5.01274387e-01 3.72208087e-01 1.51341984e+00 -3.14159716e+00 -4.89060618e-01 1.45166380e+00 -2.61040241e+00 -5.37187306e-06 -8.21665556e-01 1.84745414e+00 -2.77814519e+00 -6.29177876e-01 -5.20149556e-01 3.14159151e+00 -1.12706638e+00 -1.47934606e+00 -1.29888518e+00 1.66034225e+00 2.82905759e+00 -6.25552259e-01 -1.40139195e+00 1.57081575e+00 1.18249833e+00 2.12150626e+00 -3.38207551e-01 -3.14166539e+00 1.68171771e+00 -1.77009748e-01 -1.58375255e+00] VQE eigenvalue: -193.99999999620968 VQE result: -79.99999999620968 Solution: 5 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d7e0>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d3f0>} Optimization terminated successfully. Current function value: -184.000000 Iterations: 77 Function evaluations: 8633 Gradient evaluations: 89 fev:8633 E => -183.9999999935925 Finnished. VQE Total time: 74.76 s fev/s: 115.48 VQE solution parameters: [-1.57079395e+00 3.14158932e+00 -3.28384659e+00 -1.71272977e+00 -2.01208412e+00 -3.14158274e+00 -1.95932718e+00 -3.11851061e+00 1.57079758e+00 -3.14159152e+00 -3.84416211e+00 -2.02944379e+00 -1.04613260e+00 1.55617795e-07 2.90265034e-01 -2.44149582e+00 1.57079699e+00 -1.66147638e-04 1.60523376e+00 3.15154918e+00 -1.57078726e+00 3.14164334e+00 -2.89620718e-01 4.43458465e+00 -3.14167127e+00 2.08435575e-01 -3.14159177e+00 -2.11596845e+00 -4.91844852e-01 2.27200135e+00 1.57079518e+00 -3.14159076e+00 -1.57079565e+00 7.22648200e-01 1.57079404e+00 3.14159381e+00 1.57079767e+00 -3.14157343e+00 1.57079649e+00 -5.63021664e-02 -1.57079206e+00 -6.49350194e-01 -1.57080004e+00 3.14158868e+00 -1.57080260e+00 1.17426015e-07 -1.57079036e+00 -1.90126835e-01 1.57079634e+00 1.53598192e+00 -1.57079628e+00 -1.32434103e+00 1.57079620e+00 -2.79094446e-01 1.57079626e+00 3.14159145e+00 -1.57079580e+00 -4.53029550e-07 1.57079539e+00 -3.14159155e+00 1.57079562e+00 -3.88545698e-01 1.57079740e+00 -3.72339730e+00 1.97452052e-07 -9.16967660e-01 -3.58288000e+00 -5.33408043e-01 -3.89182147e-01 1.22330097e+00 -1.03532513e-06 9.55349903e-01 -1.28065260e+00 -1.25546362e+00 5.24663307e-01 -2.81235140e+00 -1.35012551e+00 -2.98110519e+00 1.64225729e-04 2.44126784e+00 -3.17743931e+00 1.68543234e-01 -3.14154152e+00 2.30666966e+00 1.64919861e+00 1.52026228e+00 1.57071889e+00 -3.10125879e+00 -4.71238944e+00 7.59481232e-01 1.88038810e+00 2.34455618e+00 -3.17591982e-06 1.42693046e+00 -1.55074007e+00 1.58096695e+00] VQE eigenvalue: -183.99999999359255 VQE result: -69.99999999359255 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 1, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4db40>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x78b0cb89b910>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 79 Function evaluations: 8827 Gradient evaluations: 91 fev:8827 E => -193.99999999951666 Finnished. VQE Total time: 80.73 s fev/s: 109.34 VQE solution parameters: [-1.57079607e+00 -3.14159305e+00 -3.21296108e-01 -2.02626510e+00 -1.11443239e+00 9.55219918e-01 1.57079636e+00 -3.25461175e-07 -2.24504935e-07 1.69232151e+00 -1.57079612e+00 -3.14159224e+00 2.99313593e+00 1.45024629e-01 1.57079555e+00 5.04287866e-07 2.98083149e+00 -7.69999682e-01 -3.14158880e+00 -2.42426733e+00 2.56328464e+00 -1.04139452e+00 1.57079526e+00 -6.91976728e-07 2.89840726e-05 -1.14122106e+00 -1.57079642e+00 -3.14159230e+00 -6.80172905e-07 -2.46743149e+00 1.57079703e+00 1.51647101e-06 1.57079654e+00 -1.99701501e+00 -1.57079628e+00 3.14159250e+00 -1.57079663e+00 -1.02942051e+00 1.55838597e-01 -1.16725687e-01 3.29743145e+00 3.02486766e+00 4.71237226e+00 3.62625721e+00 -1.57077927e+00 -5.06273370e-01 1.57079632e+00 -3.25400426e+00 -1.57079628e+00 -3.14159303e+00 -1.57079611e+00 -3.14159282e+00 1.57079620e+00 -3.65466291e+00 -1.37546228e+00 4.33459484e-01 1.76613100e+00 4.33484660e-01 1.97339470e+00 5.71793393e-01 -1.16819810e+00 -2.56979919e+00 1.57079671e+00 1.70656936e+00 -3.14159214e+00 -2.78055515e-01 1.02589263e+00 -2.96052486e+00 -3.14159256e+00 -8.24973476e-01 -1.57079644e+00 1.53962909e-01 2.37623204e-06 -1.87479120e+00 1.71768423e+00 1.48033308e+00 9.19015524e-07 2.26184023e+00 -1.68596684e+00 -9.80665730e-01 1.57080043e+00 -2.86201677e+00 4.43271173e+00 -2.68714246e+00 -6.71478891e-07 1.41121351e+00 -1.57081031e+00 1.94151157e+00 3.14159263e+00 -2.48071985e-01 -1.57079479e+00 -2.62965767e+00 -3.14159129e+00 1.66786348e+00 -1.71016222e+00 2.63416149e+00] VQE eigenvalue: -193.99999999951663 VQE result: -79.99999999951663 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4c670>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc430>} Optimization terminated successfully. Current function value: -210.000000 Iterations: 82 Function evaluations: 9409 Gradient evaluations: 97 fev:9409 E => -209.99999999927942 Finnished. VQE Total time: 86.33 s fev/s: 108.99 VQE solution parameters: [-1.57079677e+00 -3.14159214e+00 -1.57079878e+00 2.17892954e-06 4.62090257e-01 -4.01677428e+00 -3.14159009e+00 -2.78109155e+00 -3.14159355e+00 2.71046297e+00 2.74001800e+00 -3.14158625e+00 -3.12908227e+00 -1.39113657e+00 -1.57079130e+00 -1.99650317e-07 -1.20572518e+00 1.32880327e+00 -1.57079634e+00 -2.86792155e-07 1.66300517e+00 -1.60880072e+00 -1.57079611e+00 -3.14159077e+00 -1.07080653e-01 -3.85490479e+00 1.95213845e+00 -1.55433190e-06 -3.14163161e+00 2.03395285e+00 1.63334565e+00 -5.66320730e-02 -1.57079642e+00 4.97985341e+00 -1.57079674e+00 -3.65186746e-01 -1.57079623e+00 -7.31671457e-08 -1.57079627e+00 3.90236296e-07 1.57079545e+00 4.76873899e-07 -1.57079613e+00 3.14159203e+00 -1.57079665e+00 1.23094706e-02 1.57079494e+00 -3.69460804e-02 1.57079612e+00 -1.15880912e+00 -1.57079591e+00 3.59308383e+00 1.57079633e+00 -1.93000786e+00 1.57079265e+00 -3.07136741e+00 -1.57079991e+00 4.85928088e-06 1.57079592e+00 -4.04862178e-06 -1.57079648e+00 3.14155316e+00 1.57079632e+00 3.87646819e+00 5.60202542e-07 1.22991856e+00 -1.86053992e+00 1.46148221e+00 1.57079407e+00 1.63356818e+00 -1.57079746e+00 5.72190345e-01 1.16922144e+00 2.51846001e+00 -4.71015350e+00 2.09833826e+00 4.73662438e-06 -8.88090555e-01 -1.79655387e+00 -3.06197079e+00 -1.51948073e-06 9.60030491e-01 1.53295354e+00 -3.30362258e-02 3.14159251e+00 -1.19725367e-01 -1.65170515e+00 2.18527941e+00 -2.76025015e+00 6.55515585e-01 1.57081294e+00 2.02141257e+00 -8.43532299e-02 -7.28255966e-01 -3.14158947e+00 -2.90096264e+00] VQE eigenvalue: -209.9999999992793 VQE result: -95.99999999927931 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:BFGS and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f130>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d990>} Optimization terminated successfully. Current function value: -194.000000 Iterations: 87 Function evaluations: 9506 Gradient evaluations: 98 fev:9506 E => -193.99999999882883 Finnished. VQE Total time: 90.52 s fev/s: 105.01 VQE solution parameters: [ 1.57079624e+00 3.14158703e+00 -1.36938538e+00 -1.58906931e+00 1.57079550e+00 -1.69879884e-06 -3.14155629e+00 2.17429048e+00 -1.57079712e+00 1.94526895e-06 -1.24459374e-06 2.09899768e+00 -1.57079668e+00 -3.14159238e+00 -2.04961794e+00 -2.90031816e+00 -3.14158955e+00 -1.24387010e+00 -3.40715849e-01 -4.01229461e+00 -1.57079533e+00 3.14159302e+00 7.29351216e-01 2.87893706e+00 -1.57079620e+00 -2.42459533e-06 -1.30430148e+00 -1.83933723e+00 -2.54586276e+00 5.04404566e+00 1.57080127e+00 -2.16731801e-06 -1.57079649e+00 -1.54941605e+00 -1.57079123e+00 3.07418689e+00 1.36373469e+00 3.64889908e-01 -1.77785875e+00 2.77667238e+00 -7.03365529e-01 -2.16566875e+00 -2.43822745e+00 -2.16566949e+00 1.57079576e+00 4.31376943e-01 1.57079600e+00 -3.14159045e+00 -1.57079609e+00 3.14159162e+00 1.57079675e+00 2.64780998e-01 -1.57079680e+00 1.76868761e+00 -4.71239005e+00 1.60092797e+00 1.57079691e+00 -1.84670851e+00 -1.57079654e+00 3.14159311e+00 1.57079556e+00 5.69982313e-01 -1.57079687e+00 -3.02893638e+00 3.14159119e+00 -1.55499859e+00 3.14159248e+00 1.46246250e+00 -4.71241040e+00 2.71719519e+00 -3.14159516e+00 -2.57826370e+00 -1.57079565e+00 -2.19385099e+00 -3.14159514e+00 -9.05724130e-01 3.67352448e+00 -5.98520901e-01 -1.57079985e+00 -4.81360186e-02 -1.35380032e+00 -1.18889544e+00 3.14159618e+00 3.17196227e-01 5.41149146e+00 1.71493268e+00 -6.07010314e-07 -1.49243669e+00 1.82963489e+00 -2.76791779e-01 1.38706039e+00 -6.04467212e-01 3.14159824e+00 -3.01158080e+00 1.58869996e+00 -2.92615155e+00] VQE eigenvalue: -193.99999999882874 VQE result: -79.99999999882874 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, {'method': 'BFGS', 'tol': 0.001, 'options': {'maxiter': 150, 'gtol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d990>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998, -95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcce50>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcc160>} Optimization terminated successfully (Exit mode 0) Current function value: -209.99962121273015 Iterations: 41 Function evaluations: 4038 Gradient evaluations: 41 fev:4038 E => -209.99962121273015 Finnished. VQE Total time: 37.82 s fev/s: 106.77 VQE solution parameters: [ 4.71228945e+00 3.14133161e+00 2.28962595e+00 -2.00436697e+00 -1.57196020e+00 2.04929438e-03 1.83729660e+00 3.52970731e-01 2.47806168e-01 1.87932033e+00 1.57493928e+00 1.19176380e-03 -1.57055697e+00 3.14198752e+00 -1.51732871e+00 -1.74599452e+00 1.60484532e+00 3.14097069e+00 3.07619511e+00 3.13823212e+00 -2.53364181e-03 4.21559237e-01 2.88473236e+00 -3.01637045e-03 -3.59550035e-03 -2.78977016e+00 -9.48514033e-02 4.38994784e-03 3.85497214e+00 3.14188131e+00 6.96229614e-04 2.70087089e+00 -1.57083328e+00 8.90642967e-01 1.57069812e+00 -3.22912331e+00 1.57090356e+00 -9.01233645e-01 1.57078316e+00 -2.76108413e-04 -4.71231471e+00 -2.35816006e-01 1.57136260e+00 -2.98166588e+00 -1.57105296e+00 4.54078189e+00 -1.57024691e+00 -1.16155411e-01 -1.57089381e+00 3.14230481e+00 1.57072194e+00 3.90907111e-04 -1.57103606e+00 -3.25285507e-04 -1.57082143e+00 3.14224412e+00 -1.57077182e+00 4.78584693e-05 1.57079015e+00 4.76686997e-04 1.57093044e+00 -4.60661777e-04 1.57094186e+00 1.38589347e-04 -1.65526195e-04 -3.45640406e-01 -2.49682434e-03 -7.23197016e-01 4.37997424e-01 -1.31739426e+00 -1.49708840e+00 -1.96834174e+00 -4.30781075e-03 9.84309478e-01 -1.64487487e-04 -2.57720713e+00 1.74542888e+00 2.36730084e+00 6.24944981e+00 2.15173432e+00 1.50551034e+00 2.65829111e+00 1.57357320e+00 -6.83026859e-01 1.82744353e+00 -1.40973244e+00 1.56747156e+00 2.19588088e+00 1.66556389e+00 5.64228170e-01 2.28418169e+00 5.00722486e-01 -1.57182081e+00 1.00684050e+00 4.38998828e+00 2.61972184e+00] VQE eigenvalue: -209.99962121273015 VQE result: -95.99962121273015 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d5a0>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fa30>} Optimization terminated successfully (Exit mode 0) Current function value: -193.99975977217105 Iterations: 43 Function evaluations: 4229 Gradient evaluations: 43 fev:4229 E => -193.99975977217105 Finnished. VQE Total time: 37.35 s fev/s: 113.22 VQE solution parameters: [ 1.57076712e+00 -3.14129624e+00 -1.98562889e-01 -1.12087671e+00 1.57072669e+00 -3.35142046e-04 -1.59496989e-01 6.31864900e+00 -3.12783514e+00 -3.75095436e-01 1.38521588e+00 -8.37387303e-01 1.57094848e+00 -3.14136094e+00 -1.04651647e+00 7.16855731e-01 -5.83611301e+00 -5.83200303e-04 3.41724998e-05 1.60934097e+00 -3.14224856e+00 -4.10351873e-01 2.76050671e+00 3.12941333e+00 4.26423452e+00 -6.78386314e-01 -1.57084408e+00 3.14146411e+00 -3.13179317e+00 -5.45327444e+00 1.56945645e+00 -3.14184686e+00 -1.57065949e+00 -3.29411780e+00 1.57142799e+00 2.33087273e+00 -4.71274496e+00 5.66670346e-03 -4.71210642e+00 -2.11576399e-04 -1.57061187e+00 -2.12777894e-03 -1.57094641e+00 -1.81683092e+00 -1.57081759e+00 -2.29336561e+00 1.57094854e+00 3.14162565e+00 -1.57098906e+00 2.18181528e-04 1.57095978e+00 1.82632968e-05 4.71308379e+00 7.11394266e-05 1.56985211e+00 -4.00011111e-03 -4.71251441e+00 4.05722617e+00 1.39150393e+00 -9.34898018e-01 -1.75022701e+00 9.27880589e-01 -1.57043559e+00 -3.92564514e+00 5.93317841e-05 -5.66067188e-01 7.42685029e-04 5.40506137e-02 -1.41139777e+00 -8.97556615e-01 4.69794518e+00 -1.56491807e+00 8.52632190e-01 -3.06343672e+00 1.79924434e-04 -1.03095632e+00 -4.00119111e+00 -1.37672603e+00 -2.01851695e+00 2.84709932e+00 1.57154354e+00 -1.33278149e+00 -1.56993609e+00 2.80801013e+00 -1.95183616e+00 7.60747994e-01 2.34648284e+00 -7.03594845e-01 -5.10183049e-04 9.47715163e-01 -1.56356776e+00 -1.93326711e+00 -3.14077678e+00 -1.63729741e+00 1.65703284e+00 -7.62477752e-01] VQE eigenvalue: -193.99975977217105 VQE result: -79.99975977217105 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d630>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f910>} Optimization terminated successfully (Exit mode 0) Current function value: -189.99982034414984 Iterations: 42 Function evaluations: 4142 Gradient evaluations: 42 fev:4142 E => -189.99982034414984 Finnished. VQE Total time: 35.63 s fev/s: 116.26 VQE solution parameters: [ 1.57027680e+00 -8.10862148e-01 -3.14242353e+00 4.16921999e-01 -1.57149129e+00 -6.36510043e-05 -1.45022937e-04 -2.96106370e+00 -4.71201481e+00 1.00622548e-03 -1.57060236e+00 -1.33346586e-04 -5.55549203e-01 1.56987868e+00 1.57012092e+00 3.14265410e+00 4.56824865e-01 -1.57081166e+00 -1.33682357e+00 1.57045833e+00 4.71221092e+00 3.14157074e+00 -4.11536648e+00 1.57032966e+00 1.57129969e+00 4.42451506e-04 1.57103677e+00 3.14153637e+00 1.82707470e-02 1.71210774e+00 -1.57100462e+00 -3.14272264e+00 -5.48636619e-06 -3.14088925e+00 3.14136756e+00 8.10404382e-01 -1.25426303e+00 -3.34962611e+00 -1.88783903e+00 -2.08313364e-01 1.57034220e+00 5.00362736e+00 -4.71381467e+00 -3.99122347e-01 -1.57232368e+00 -2.98528555e+00 -1.57052548e+00 4.57533407e-01 4.71256632e+00 -3.14192339e+00 -4.71217560e+00 1.33651247e+00 4.71273478e+00 1.52197865e+00 1.57080524e+00 -3.78815711e+00 -1.57107387e+00 -4.03824255e+00 -1.46409041e+00 -7.77657720e-02 4.60588034e+00 3.08261437e+00 3.46644741e-04 -2.77436467e+00 1.57039942e+00 1.26494648e+00 -5.39797769e-04 1.33427379e+00 1.57055118e+00 8.80523045e-01 -6.31676665e-04 2.38307160e-01 4.90780163e-04 5.47419815e-01 -1.57110167e+00 -2.19269278e+00 -5.23472605e-05 1.81974863e+00 1.57075912e+00 -1.01627718e+00 -1.57071720e+00 -2.88270957e+00 -3.14155628e+00 3.02794953e+00 -1.57065678e+00 -6.61053598e-01 -3.14162955e+00 -1.29807535e+00 -3.08145761e-05 -1.63548396e+00 -4.71270386e+00 -2.01322399e+00 3.52945068e-04 -2.69635582e+00 -3.14093517e+00 -1.07743522e+00] VQE eigenvalue: -189.99982034414984 VQE result: -75.99982034414984 Solution: 2 x00 = 0, x01 = 1, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 1, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcd120>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcdb40>} Optimization terminated successfully (Exit mode 0) Current function value: -199.9997408327779 Iterations: 44 Function evaluations: 4338 Gradient evaluations: 44 fev:4338 E => -199.9997408327779 Finnished. VQE Total time: 37.23 s fev/s: 116.51 VQE solution parameters: [-1.57096922e+00 -3.14231132e+00 2.08023763e+00 -1.54583091e+00 1.57106653e+00 3.14180596e+00 4.97107641e-04 2.77364932e+00 1.57008883e+00 -1.44495338e-04 -2.96136705e+00 1.03874976e+00 4.71224665e+00 3.14200879e+00 -4.95466279e-01 -1.82932857e+00 1.57192221e+00 4.28083037e-05 -3.57438124e+00 -1.09381886e+00 -2.18447098e-01 -3.13705315e+00 -2.74208149e+00 -2.40619908e+00 -1.57169658e+00 3.34690144e-04 -8.16413569e-01 6.94936906e-01 -1.57078694e+00 3.14158473e+00 -1.20879324e+00 2.00158000e+00 -1.57072691e+00 2.87853085e-01 1.57189813e+00 7.73641220e-01 -3.76161881e+00 1.50451023e+00 6.20061215e-01 1.50487198e+00 1.58981096e+00 1.45887456e+00 -1.58978690e+00 -1.52679289e+00 -1.57089440e+00 -3.22236435e+00 1.57067268e+00 -3.70348105e+00 -1.57033813e+00 -2.75310055e+00 -1.57107995e+00 8.11053007e-05 -1.57095144e+00 3.14184362e+00 1.57062754e+00 -3.41778976e+00 -1.56988591e+00 2.72773989e+00 4.71183873e+00 -1.01093402e+00 1.57069735e+00 1.17468072e+00 -1.57096958e+00 -4.09057916e-04 5.31739251e-04 -1.87244565e+00 -5.12503975e-05 -1.76700873e+00 -1.57033114e+00 2.90637983e+00 3.14162661e+00 1.99878880e+00 -4.62055317e+00 -2.20939458e+00 -6.52459901e-04 1.78545860e+00 1.44985542e+00 5.21166243e-01 -8.03379556e-04 1.92927875e+00 -1.76389541e+00 -2.60976859e+00 1.78917182e+00 -2.89394711e+00 -5.00584707e+00 -2.88629576e+00 -3.14024520e+00 2.16110961e+00 2.16496478e+00 -2.13198014e+00 -3.14202793e+00 9.80700554e-01 1.97150069e+00 3.14109430e-02 1.59334608e+00 1.52608713e-02] VQE eigenvalue: -199.9997408327779 VQE result: -85.99974083277789 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4cc10>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f490>} Optimization terminated successfully (Exit mode 0) Current function value: -177.99901346094046 Iterations: 45 Function evaluations: 4440 Gradient evaluations: 45 fev:4440 E => -177.99901346094046 Finnished. VQE Total time: 40.31 s fev/s: 110.14 VQE solution parameters: [ 3.14079430e+00 7.96622548e-01 1.56978856e+00 3.14088790e+00 3.11944198e+00 1.75769460e+00 3.14237975e+00 -4.81875416e+00 -3.14144578e+00 -2.93931839e+00 1.01153417e+00 1.56941592e+00 1.57002506e+00 1.32858634e-03 -6.48562893e+00 4.66777346e+00 1.57107918e+00 4.82103687e-04 -2.88930725e+00 -1.56745925e+00 1.57104499e+00 7.83754317e-05 -3.14304969e+00 2.95751025e+00 1.52436171e+00 -3.14530309e+00 -5.67456201e-04 2.03917100e+00 -3.14085539e+00 7.66461474e-01 -3.14131605e+00 -3.83768955e-01 1.21550648e-04 -2.13329650e+00 -1.57017324e+00 2.26978659e-02 -1.57106172e+00 -8.34465711e-05 1.57159150e+00 3.14270164e+00 -1.57128849e+00 3.14234323e+00 1.57187463e+00 2.13157545e+00 1.56623963e+00 2.84728397e+00 1.56713794e+00 9.10635558e-02 -1.56602761e+00 -6.47073390e-01 1.56627890e+00 -3.53591692e+00 9.40984402e-02 -2.55262464e+00 9.41086927e-02 5.92554396e-01 1.31525215e-03 1.70670981e+00 -3.06725394e-04 -2.18338393e-01 -4.00874043e-04 -3.31446545e+00 -3.14130987e+00 3.67691401e+00 -6.38132820e-05 1.81311559e+00 -4.71153412e+00 2.58729954e+00 1.57101539e+00 2.61937015e+00 4.71276884e+00 1.13727526e+00 1.57019705e+00 1.19422611e-01 3.14245784e+00 -1.95327824e+00 1.57003964e+00 -3.48232179e-01 -6.98938010e-04 -2.79812581e-01 1.57115653e+00 -2.66823112e+00 -3.14155600e+00 2.72872087e+00 -1.51592130e+00 2.51999760e+00 3.14151718e+00 1.04621883e+00 -8.60859278e-05 -1.78455417e+00 -3.14383582e+00 2.00681549e+00 3.14310114e+00 1.75549315e+00 -6.60323891e-04 -5.01964893e-01] VQE eigenvalue: -177.99901346094046 VQE result: -63.99901346094046 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4df30>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f640>} Optimization terminated successfully (Exit mode 0) Current function value: -195.99951715606446 Iterations: 41 Function evaluations: 4038 Gradient evaluations: 41 fev:4038 E => -195.99951715606446 Finnished. VQE Total time: 37.85 s fev/s: 106.68 VQE solution parameters: [ 1.53665846e-02 -1.66208923e+00 2.51836129e-04 -1.30979641e+00 3.14129231e+00 3.81783787e+00 -5.70312442e-04 -4.85682536e+00 1.65674054e+00 1.79871721e+00 -1.57076091e+00 -3.57290291e-05 1.57071937e+00 -3.14142038e+00 1.57095171e+00 3.14126075e+00 1.57181348e+00 -3.14233987e+00 -1.57152143e+00 -1.84101868e-04 -3.14179021e+00 -2.43471573e+00 -4.71145969e+00 3.14150883e+00 -8.00446228e-02 -4.78773795e+00 3.14138182e+00 4.73815937e-01 -3.14139077e+00 -1.33059798e+00 3.14232515e+00 -3.08884678e+00 1.57123758e+00 -3.36540326e-05 -4.71231102e+00 1.78801109e-04 1.57076287e+00 -3.14143267e+00 -1.57047289e+00 -3.68624204e-04 3.50412426e+00 -1.81385483e+00 3.14231387e+00 3.31895900e-04 -3.14183789e+00 -3.14160632e+00 3.14112209e+00 1.53977753e-04 -1.60633935e-05 -3.14234366e+00 5.20938355e+00 -3.31672196e+00 1.07332304e+00 -3.31704833e+00 4.71242789e+00 3.22129216e+00 1.57096484e+00 -3.14172503e+00 -1.57121252e+00 -5.02532491e-04 -1.57105362e+00 4.44525267e-04 -1.57043444e+00 -3.14203982e+00 -6.28338216e+00 -2.65200906e+00 -1.57118724e+00 -5.01196371e-01 -1.57510641e+00 1.51348788e+00 -1.57089098e+00 -4.88906685e-01 1.58558459e+00 -2.61031285e+00 -1.57068902e+00 -8.21488154e-01 1.57173997e+00 -2.77807498e+00 -1.57074281e+00 -5.20094105e-01 3.14182649e+00 -1.12675294e+00 -1.57131848e+00 -1.29866055e+00 3.14112221e+00 2.82911287e+00 1.57047512e+00 -1.40133721e+00 1.57139771e+00 1.18251015e+00 1.57104720e+00 -3.38254090e-01 -1.57068483e+00 1.68163572e+00 1.57151703e+00 -1.58363835e+00] VQE eigenvalue: -195.99951715606446 VQE result: -81.99951715606446 Solution: 5 x00 = 0, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 1, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f880>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fbe0>} Optimization terminated successfully (Exit mode 0) Current function value: -209.99966475567095 Iterations: 57 Function evaluations: 5609 Gradient evaluations: 57 fev:5609 E => -209.99966475567095 Finnished. VQE Total time: 51.37 s fev/s: 109.20 VQE solution parameters: [ 1.57039920e+00 3.14107488e+00 -4.25008214e+00 -2.33136698e+00 1.51291720e-01 -2.46408668e-02 -3.14121415e+00 -5.21589045e+00 3.14119814e+00 -4.09345098e+00 -3.14023561e+00 -5.60351028e-01 -3.79736980e-04 9.75481035e-01 3.14181105e+00 -3.78125576e+00 1.64128207e+00 2.46082500e+00 1.57044811e+00 3.14105377e+00 -1.82465679e+00 9.64667534e-01 3.33425252e-03 3.52547298e+00 -2.62114877e+00 -2.08202696e-03 -3.14215628e+00 -1.85133938e+00 9.61426145e-02 5.11545291e-02 8.21833705e-04 -3.73961365e+00 -1.57077621e+00 2.17377369e+00 1.57035817e+00 3.13957226e+00 1.57083415e+00 -3.14215527e+00 1.57078852e+00 6.12242894e-04 -1.57069411e+00 1.56467283e-04 -1.57086670e+00 3.14101075e+00 -1.57058739e+00 -3.14192131e+00 -1.57071820e+00 -1.82198548e-06 -1.57079716e+00 1.46042128e+00 -1.56997978e+00 -1.26470844e+00 1.57084779e+00 -5.74259999e-04 1.57025685e+00 3.14077326e+00 -1.57025584e+00 -1.48610900e-04 1.57064257e+00 -3.14129998e+00 1.57101432e+00 -2.02892302e-04 1.57082294e+00 -3.14078005e+00 -1.07625589e-03 -9.16981932e-01 -1.41951192e+00 -5.33395794e-01 -1.56902612e+00 1.22332210e+00 -1.57109249e+00 9.55392142e-01 -1.57176189e+00 -1.25544686e+00 1.57004214e+00 -2.81231087e+00 -1.57069885e+00 -2.98108334e+00 2.45784038e+00 2.44129674e+00 -3.14128496e+00 1.68563861e-01 -2.15456064e+00 2.30662243e+00 4.70955669e+00 1.52024612e+00 2.09066968e+00 -3.10123109e+00 -4.71208654e+00 7.59488561e-01 1.66749622e+00 2.34456389e+00 1.57237020e+00 1.42690286e+00 -9.05156170e-01 1.58096191e+00] VQE eigenvalue: -209.99966475567095 VQE result: -95.99966475567095 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dea0>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d360>} Optimization terminated successfully (Exit mode 0) Current function value: -183.99965451555488 Iterations: 49 Function evaluations: 4819 Gradient evaluations: 49 fev:4819 E => -183.99965451555488 Finnished. VQE Total time: 41.77 s fev/s: 115.37 VQE solution parameters: [-1.57069242e+00 -3.14154541e+00 -1.90431434e-01 -5.59048984e-01 -1.53323756e+00 1.00744535e+00 1.57083184e+00 8.26302505e-05 1.57140754e+00 3.14253945e+00 -1.72697960e+00 -2.71165641e+00 1.61080620e+00 1.43505264e-02 2.10359838e+00 9.36362851e-03 3.14301988e+00 8.51691386e-01 -3.77367765e+00 -3.14124051e+00 2.55444113e+00 1.52232831e+00 -1.56497910e+00 1.65454915e-03 -1.45735991e+00 -2.89455015e-02 -1.57167682e+00 -3.14154656e+00 -3.94066573e-03 -3.38930664e+00 1.57076118e+00 3.36533676e-04 1.57144150e+00 -1.56811200e+00 -1.57094581e+00 3.14206447e+00 -1.57062554e+00 -1.52693374e+00 1.57086728e+00 -1.14174610e+00 4.71253724e+00 3.99161263e+00 4.71258812e+00 2.78207814e+00 -1.57062114e+00 -1.62409746e-02 1.57073160e+00 -3.14309585e+00 -1.57101592e+00 -3.14099321e+00 -1.57072135e+00 -3.14177670e+00 1.57080638e+00 -3.72760178e+00 1.57033853e+00 -3.31215180e-01 1.57074668e+00 -5.78956476e-01 1.84123396e+00 6.08894411e-01 -1.30095500e+00 -2.53512639e+00 1.57062994e+00 1.46561664e+00 -3.14144084e+00 -2.78070312e-01 1.00793710e+00 -2.96045974e+00 -3.14224131e+00 -8.24977726e-01 -4.41918139e-04 1.54009939e-01 4.55673678e-01 -1.87477072e+00 3.09883013e+00 1.48033591e+00 5.32382094e-01 2.26190077e+00 -1.57009326e+00 -9.80563510e-01 9.38546632e-01 -2.86197435e+00 4.68563659e+00 -2.68709396e+00 -6.18395218e-03 1.41122129e+00 -1.17042227e-01 1.94151777e+00 3.14270690e+00 -2.48106584e-01 -1.57460115e+00 -2.62965640e+00 -3.14126783e+00 1.66779472e+00 -1.73233102e+00 2.63412926e+00] VQE eigenvalue: -183.99965451555488 VQE result: -69.99965451555488 Solution: 7 x00 = 0, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 1, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4cdc0>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4cb80>} Optimization terminated successfully (Exit mode 0) Current function value: -209.9992291716867 Iterations: 48 Function evaluations: 4735 Gradient evaluations: 48 fev:4735 E => -209.9992291716867 Finnished. VQE Total time: 42.66 s fev/s: 110.98 VQE solution parameters: [-1.57094661e+00 -3.14160902e+00 -1.46138127e+00 1.35666184e+00 1.69720151e-03 -5.01788080e+00 -3.92150432e+00 1.86158848e-03 -3.18098086e+00 3.17644426e+00 2.90210419e+00 1.15944299e-03 -2.79494008e+00 -3.72325054e-03 -2.05312238e+00 9.21796010e-02 -4.64617751e+00 3.11835858e+00 -1.59396386e+00 -1.14089366e-02 1.23957658e+00 -2.44438283e+00 -1.57093968e+00 -3.14134733e+00 -1.83197242e-01 -2.64141938e+00 3.14216024e+00 4.74433273e-01 -2.52179998e+00 -1.46896191e+00 1.57140374e+00 -7.68197351e-04 -1.57077098e+00 5.34684051e+00 -1.57117149e+00 -8.91513835e-05 -1.57102786e+00 1.04065547e-03 -1.57100602e+00 8.06429956e-04 1.57100891e+00 1.03131726e-04 -1.57083289e+00 3.14217761e+00 -1.57106750e+00 1.34107086e-03 1.57049358e+00 -2.96605132e+00 1.57111269e+00 -3.64278123e+00 -1.57100192e+00 3.05734783e+00 1.57055537e+00 -1.97736516e+00 1.57145089e+00 -3.22992696e+00 -1.57082895e+00 -1.37614315e-05 1.57081042e+00 -1.88028550e-04 -1.57095455e+00 2.52368406e+00 1.57055962e+00 3.66468581e+00 -3.82828696e-04 1.22964051e+00 -1.57055459e+00 1.46123962e+00 7.91614909e-01 1.63342715e+00 -1.60951183e+00 5.71940561e-01 1.81013117e+00 2.51836374e+00 -4.36586974e+00 2.09818608e+00 4.90011805e-01 -8.88351739e-01 -3.21285937e+00 -3.06220372e+00 -2.69184795e-02 9.59839062e-01 7.58924556e-01 -3.32976273e-02 3.14158754e+00 -1.19918687e-01 -1.73025235e+00 2.18519929e+00 -1.57006331e+00 6.55384715e-01 1.63016845e+00 2.02130248e+00 -4.50708976e-04 -7.28242188e-01 -1.78385450e+00 -2.90101928e+00] VQE eigenvalue: -209.9992291716867 VQE result: -95.9992291716867 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:SLSQP and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcc5e0>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcd7e0>} Optimization terminated successfully (Exit mode 0) Current function value: -189.99989611630568 Iterations: 55 Function evaluations: 5425 Gradient evaluations: 55 fev:5425 E => -189.99989611630568 Finnished. VQE Total time: 46.15 s fev/s: 117.55 VQE solution parameters: [ 1.57089374e+00 3.14215521e+00 1.68189321e+00 -1.32577784e+00 1.91500165e+00 -1.22592052e-03 -2.04865357e+00 -2.76054179e-01 -1.57654387e+00 -3.01757228e-03 -2.44620037e+00 1.82686107e+00 -1.57056354e+00 -3.14130277e+00 -1.57699187e+00 -3.14780761e+00 -3.53522340e+00 -2.44958141e+00 -1.66628838e-01 -2.56404456e+00 -1.57080675e+00 3.14164839e+00 -2.14735623e-04 1.99245534e+00 -1.57054438e+00 1.82748518e-04 1.08164673e-04 -1.40805121e+00 -1.57081964e+00 2.22988212e-04 2.54897104e+00 -2.71311790e-01 1.57073679e+00 -1.68596162e+00 1.57111304e+00 3.14116427e+00 -1.57079370e+00 -2.76919196e-03 -1.57104985e+00 3.62190441e+00 1.57100641e+00 -3.03368722e+00 -4.71225926e+00 -5.71590879e-01 1.57081419e+00 -9.31586926e-01 1.57092229e+00 -3.40093714e+00 -1.57091261e+00 3.14157634e+00 1.57101221e+00 -9.14643128e-02 -2.06057897e+00 2.44168644e+00 -4.22241583e+00 6.99921766e-01 1.19571993e-01 -1.52384629e+00 1.19629169e-01 1.52309760e+00 1.57077682e+00 3.32019013e+00 -1.57142610e+00 -3.14168389e+00 3.14208295e+00 -1.55525471e+00 2.79762445e+00 1.46219965e+00 -6.82963372e+00 2.71700377e+00 -3.14799127e+00 -2.57850125e+00 -1.40757681e+00 -2.19401839e+00 -3.14155080e+00 -9.05971749e-01 3.13284146e+00 -5.98702224e-01 -1.27071062e+00 -4.82957870e-02 -1.71002726e+00 -1.18900387e+00 3.14106750e+00 3.16987469e-01 4.71246945e+00 1.71476274e+00 6.55212553e-04 -1.49258224e+00 1.57014318e+00 -2.76979239e-01 -4.57592822e-04 -6.04572332e-01 -1.00363587e+00 -3.01163656e+00 1.81436173e+00 -2.92625242e+00] VQE eigenvalue: -189.99989611630568 VQE result: -75.99989611630568 Solution: 9 x00 = 0, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 1, x22 = 0, x23 = 0, x30 = 1, x31 = 0, x32 = 0, x33 = 0, {'method': 'SLSQP', 'tol': 0.001, 'options': {'maxiter': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcd7e0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998, -95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874, -95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x7fc8cd0d77f0>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x78b0cb89a440>} Optimization terminated successfully. Current function value: -209.953193 Iterations: 5 Function evaluations: 4145 fev:4145 E => -209.95319254022493 Finnished. VQE Total time: 35.44 s fev/s: 116.96 VQE solution parameters: [ 4.71232585e+00 3.13389990e+00 -2.22319625e+00 -2.92499937e+00 -4.70712869e-01 -5.85887419e-01 1.57080678e+00 -2.61502271e-06 -1.46386945e-04 2.64416978e-01 1.57080032e+00 -1.87029781e-06 1.57086279e+00 -3.34487519e-05 9.29689480e-01 -1.57073369e+00 7.67032488e-03 3.14159279e+00 3.13362989e+00 3.14160617e+00 -1.27890784e-01 3.10984087e+00 1.30368613e+00 -2.35574497e-01 1.82683110e+00 -2.92787961e+00 -4.25663481e-01 1.15372953e-01 2.96115694e+00 4.14824925e+00 1.56096065e+00 3.12632266e+00 -1.57079648e+00 8.25830863e-01 1.54700496e+00 -3.14893834e+00 1.55572968e+00 -2.68590787e-01 2.77439580e+00 1.03406503e-01 -3.50879002e+00 -1.03392756e-01 1.57079640e+00 -4.64993016e-01 -1.56979564e+00 2.21190314e+00 -1.57080092e+00 -4.05063003e-08 -1.57079634e+00 3.14159272e+00 1.57079587e+00 1.25994176e-07 -1.57074628e+00 -3.81787457e-03 1.56881597e+00 2.44302595e+00 -1.57366157e+00 4.26314499e-02 1.56868038e+00 -5.67742670e-04 1.57161957e+00 1.53059508e-01 4.71239221e+00 1.09704385e+00 -5.75178686e-08 -7.34498520e-01 1.18334152e+00 6.15664993e+00 4.04495112e-06 5.53670336e+00 -1.57073637e+00 7.62183349e+00 1.57409232e-06 4.45645589e+00 -4.44966661e-05 7.40533830e-01 1.57084661e+00 3.07764943e+00 1.56312792e+00 9.61141580e+00 1.56283526e+00 4.69543765e+00 1.44298252e+00 4.16577335e+00 2.79577139e+00 6.06893126e+00 3.23533981e-01 9.66337364e+00 1.14813570e+00 2.83604087e+00 1.66689933e+00 5.16254895e+00 1.48114469e-02 6.30441219e+00 6.82310143e-01 9.52284979e+00] VQE eigenvalue: -209.95319254022507 VQE result: -95.95319254022507 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4fa30>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e050>} Optimization terminated successfully. Current function value: -209.973537 Iterations: 5 Function evaluations: 4130 fev:4130 E => -209.97353711991246 Finnished. VQE Total time: 37.81 s fev/s: 109.24 VQE solution parameters: [ 4.71238902e+00 -3.14159267e+00 1.53722854e+00 -6.96795544e-04 1.57079633e+00 3.14159267e+00 -3.14159259e+00 5.15249614e+00 -1.57079633e+00 6.45442305e-10 1.57043271e+00 -4.18467141e-04 3.13770942e+00 -3.23586042e+00 -1.57383655e+00 -1.80515996e-04 -3.37121624e+00 8.74694734e-01 1.57079984e+00 -2.22932372e-06 3.18023593e-05 -2.35392064e+00 1.57079635e+00 1.25375726e-05 1.70902828e+00 -1.56322743e+00 -1.57078055e+00 3.14160470e+00 -2.67400455e+00 -2.07197479e+00 2.33906015e+00 -1.91649295e+00 -1.57079636e+00 4.46894111e-01 1.57079633e+00 2.90680055e+00 -3.24539935e+00 -1.38790509e+00 -3.03778593e+00 -1.38790508e+00 -1.57079851e+00 8.54825991e-01 6.49888161e-01 -6.12791761e-02 6.49897149e-01 -3.20310896e+00 -1.74299585e+00 2.84604986e+00 -1.74086253e+00 -4.70277279e-01 1.85586783e-01 1.04636220e+00 3.32717964e+00 -2.09523462e+00 1.57080984e+00 3.19985536e+00 -1.57079826e+00 1.49082326e+00 1.57146965e+00 4.16424880e-01 -1.57109345e+00 7.30521720e-05 -1.57059367e+00 -2.37000780e+00 1.17513694e-08 3.46309851e+00 -4.53917448e-08 -1.18417365e+00 -1.57079633e+00 -3.74885795e+00 3.14159265e+00 2.32573621e+00 3.35714508e-04 7.22824397e-02 1.57311786e+00 3.28718553e+00 -3.13985786e+00 -3.35949128e+00 -1.42651980e+00 4.24152273e+00 -5.48894711e-07 5.40326558e+00 -1.57079790e+00 5.17970081e+00 8.76030132e-08 3.95213778e+00 1.56330055e+00 4.03245950e+00 1.16144886e-06 4.32250762e+00 -1.78890462e+00 1.19934764e+00 -1.32459076e+00 4.18815673e+00 2.29780471e-02 5.13531339e+00] VQE eigenvalue: -209.97353711991252 VQE result: -95.97353711991252 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4ff40>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fd90>} Optimization terminated successfully. Current function value: -209.946874 Iterations: 4 Function evaluations: 3246 fev:3246 E => -209.94687354505373 Finnished. VQE Total time: 30.31 s fev/s: 107.11 VQE solution parameters: [ 1.57031181e+00 -2.07453423e-03 1.46464202e+00 1.32094137e-03 2.76540182e+00 9.52151834e-01 1.56812114e+00 -3.14169006e+00 -2.42473951e+00 -1.51907583e+00 2.45874196e-01 1.16148982e+00 -1.56161724e+00 1.08172776e-03 2.47822299e+00 1.77131125e+00 3.01478486e+00 -1.55286566e-05 3.17983250e+00 -8.57488629e-05 3.71085073e+00 1.08526991e+00 -1.56390918e+00 3.14505932e+00 1.57567472e+00 -3.14472083e+00 -5.99587747e-03 5.20689153e+00 -1.57158214e+00 2.39457225e-04 -1.10936984e-01 -1.52834808e+00 1.57082208e+00 -1.86685790e-02 1.52677119e+00 2.74122731e-02 -1.61302447e+00 -2.85783554e+00 1.57083559e+00 2.42542031e+00 -1.57079391e+00 3.14159223e+00 -1.57079068e+00 2.91533238e+00 -1.57052201e+00 -2.48807362e+00 -1.57075681e+00 -4.66051529e-06 1.57076849e+00 3.14159239e+00 -1.57080214e+00 3.76844822e-07 1.57076565e+00 -5.15004503e-01 4.71235415e+00 -5.85784018e-01 -2.59486700e+00 -3.11106809e+00 5.46737488e-01 3.32841913e-02 4.30129438e+00 3.02726797e+00 1.97708580e+00 -3.12907579e+00 3.14159453e+00 9.78299509e+00 1.35631600e+00 2.82632981e+00 3.13970098e+00 3.95348215e+00 -1.53682774e+00 1.91169506e+00 -1.66782110e+00 5.16545969e+00 -3.14872550e+00 -1.56118497e+00 -1.44784517e+00 4.21818143e+00 1.69760192e+00 4.78105140e+00 1.60903519e+00 -1.17450294e+00 -1.82503241e+00 4.93659550e+00 -6.74289050e-03 7.71551349e-02 -2.91287199e-03 -9.16096093e-01 -1.56934073e+00 3.82075568e+00 -3.14203410e+00 6.49793047e+00 1.57511489e+00 -1.46028005e+00 -9.49743843e-02 6.59469979e+00] VQE eigenvalue: -209.94687354505373 VQE result: -95.94687354505373 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dfc0>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4c670>} Optimization terminated successfully. Current function value: -209.874596 Iterations: 6 Function evaluations: 4933 fev:4933 E => -209.87459624709447 Finnished. VQE Total time: 45.90 s fev/s: 107.46 VQE solution parameters: [ 1.57202016e+00 -3.17184229e+00 1.67923659e+00 -2.07931047e+00 1.57079338e+00 3.14143493e+00 -9.80861268e-01 1.49566176e+00 1.67364009e+00 -2.43341664e-01 1.50803422e+00 1.50113537e-01 5.97588241e+00 2.21124526e+00 -1.57078975e+00 6.07328907e-06 2.09943443e+00 1.24067014e+00 -1.57086750e+00 -3.14162725e+00 -2.85286218e-02 -1.70437734e+00 -1.57100035e+00 -1.96429231e-05 -1.55228734e+00 1.81427848e-03 2.63598224e+00 1.09809916e+00 9.69349295e-01 2.09365345e-02 -7.04313593e-01 3.21646720e+00 -1.57087406e+00 2.74204294e+00 -1.54269598e+00 -1.08471370e+00 -4.70563693e+00 2.07611558e+00 1.56733769e+00 3.06992449e+00 -1.56601745e+00 1.16244727e+00 -1.46893336e+00 3.07392351e-02 -1.66560453e+00 -2.86317651e+00 4.71241617e+00 -1.29010426e+00 -1.57078709e+00 -2.30776400e+00 -1.03771911e+00 -1.10213151e-01 -2.10436433e+00 3.00704147e+00 1.57006411e+00 -3.34888615e+00 -1.49508405e+00 4.51037711e-01 1.62860753e+00 3.07061371e-03 1.57877338e+00 -2.28343061e-02 -1.56793935e+00 3.29787008e-02 3.14157481e+00 4.28935942e+00 -3.10820752e-05 8.55923713e+00 -1.63325434e+00 8.56951715e+00 2.88121289e+00 6.50365365e+00 -2.98355964e+00 7.85302402e-01 -1.38983497e+00 6.49439223e+00 3.22245129e-06 7.21638937e+00 1.85394628e+00 6.31125185e+00 -3.14153394e+00 -6.96901495e-02 1.57406200e+00 -1.51196969e+00 -3.14174926e+00 -3.60272563e-02 -3.12482251e+00 1.88710571e+01 -1.34917395e+00 3.17701693e+00 -2.54009855e+00 6.83480455e+00 8.69787913e-01 4.60502077e+00 4.20621007e+00 6.77919132e+00] VQE eigenvalue: -209.8745962470946 VQE result: -95.87459624709459 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4fc70>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4cca0>} Optimization terminated successfully. Current function value: -193.902181 Iterations: 5 Function evaluations: 4096 fev:4096 E => -193.90217555063344 Finnished. VQE Total time: 38.01 s fev/s: 107.76 VQE solution parameters: [ 1.57092538e+00 1.62849671e+00 1.57078870e+00 1.57079083e+00 4.71239519e+00 1.45354310e-06 2.88439119e+00 -1.72636779e+00 -1.99449876e+00 2.07236337e-03 5.38777442e+00 -1.61785389e+00 1.56879336e+00 4.11731399e-04 -3.16846577e+00 4.53869340e+00 1.57340312e+00 5.86801877e-05 -3.57744898e+00 -1.55516550e+00 -1.57079426e+00 3.80415063e-06 -3.14159893e+00 5.17155744e+00 4.71238940e+00 -1.19223486e-07 -4.67181167e-01 1.61657875e+00 -6.90875055e-02 -8.39604954e-01 -1.57051786e+00 -1.02179363e-06 1.57079635e+00 -3.41930127e+00 -3.08389226e+00 -5.86257428e-01 -1.44485993e+00 2.92001801e+00 1.45930182e+00 2.34892920e-02 -1.59605212e+00 3.18569311e+00 -1.54538186e+00 9.35110449e-01 -2.08857059e+00 -4.13622858e+00 -1.05093602e+00 -2.13156111e+00 -1.73335105e+00 -3.60052948e-01 1.42273569e+00 -2.35070462e+00 1.86323597e-01 2.18030989e+00 -1.86322742e-01 2.18031205e+00 1.57084264e+00 2.67482834e+00 1.57079744e+00 -8.77656903e-07 1.57079726e+00 5.14815946e-02 -1.57079646e+00 1.26224677e+00 -2.09686312e-07 1.03798882e+01 -3.14159322e+00 9.57955184e+00 1.61010633e+00 1.42082882e+01 4.20732138e-01 8.32657596e+00 1.60749724e+00 8.51726454e+00 -1.09339204e-03 5.54402946e+00 1.56783079e+00 3.36501405e+00 3.14273436e+00 1.22140336e+01 1.57734287e+00 5.19315761e+00 -3.14159242e+00 8.50052393e+00 -1.57079477e+00 3.30391601e+00 3.14159250e+00 5.79504895e+00 1.55017434e+00 3.69232461e+00 -1.52470169e+00 7.25356252e+00 -4.85046681e-05 5.50805482e+00 1.57079651e+00 1.18761134e+00] VQE eigenvalue: -193.90218124648075 VQE result: -79.90218124648075 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d630>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fa30>} Optimization terminated successfully. Current function value: -183.996520 Iterations: 4 Function evaluations: 3304 fev:3304 E => -183.99652045764685 Finnished. VQE Total time: 30.77 s fev/s: 107.36 VQE solution parameters: [ 4.12676813e-03 -1.54500815e+00 2.55001918e-05 -4.42005365e-01 3.14159293e+00 5.99142644e+00 -5.07509895e-05 -3.01054250e+00 1.55045445e+00 1.78796700e+00 -2.57450546e+00 1.54187305e+00 1.57079628e+00 -3.14157236e+00 6.28291482e+00 1.56891058e+00 4.71240927e+00 -3.14159262e+00 -3.12827527e+00 1.57233055e+00 -1.57071874e+00 6.16323152e-05 -1.57080622e+00 3.14159232e+00 3.40767470e-03 -4.71202458e+00 4.71238899e+00 -3.14159265e+00 -1.56156679e+00 1.57079641e+00 1.57381564e+00 -3.14159421e+00 -1.02783901e+00 3.28281467e-01 -1.57079633e+00 -9.82060724e-11 4.71238898e+00 -3.14159265e+00 -1.57079822e+00 -9.87549637e-07 2.56617455e+00 -2.25907453e+00 3.25842274e+00 -5.05424686e-01 3.93216365e-01 -2.49471465e-01 2.74835356e+00 2.89222529e+00 3.60565103e+00 -2.67986819e+00 3.60901520e+00 -2.68586259e+00 1.57082860e+00 -2.47053767e+00 1.84350400e+00 4.13865558e+00 1.84396639e+00 -1.00034423e+00 -1.57080252e+00 1.32929999e+00 -1.57079684e+00 -2.50717563e-01 -2.11371697e+00 -2.81332051e+00 -3.14172410e+00 2.86603417e+00 -1.57079647e+00 7.35290294e+00 1.57079479e+00 2.04468933e-01 -3.13159073e+00 1.91667029e+00 1.56795602e+00 4.40903599e+00 1.16340392e-08 1.17814490e+00 1.57079627e+00 2.61980565e+00 1.51007190e-06 3.93614296e+00 1.57079471e+00 2.98013103e+00 -3.14158878e+00 5.36445775e+00 1.47353810e-06 4.95895675e+00 1.57079612e+00 -9.95860445e-01 -6.24963655e-08 6.30212189e+00 1.57079633e+00 5.36994484e+00 -1.11177933e-03 8.22619428e-01 -1.57079133e+00 3.07949025e+00] VQE eigenvalue: -183.9965204576469 VQE result: -69.99652045764691 Solution: 5 x00 = 0, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 1, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d3f0>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f760>} Optimization terminated successfully. Current function value: -199.992639 Iterations: 6 Function evaluations: 5107 fev:5107 E => -199.99253468120688 Finnished. VQE Total time: 47.60 s fev/s: 107.30 VQE solution parameters: [ 1.57080095e+00 3.14123495e+00 5.74288701e-01 -1.35019821e+00 1.57501945e+00 1.56946257e-03 -4.71263314e+00 -3.14181360e+00 2.10561510e+00 1.34202809e+00 -2.40565593e+00 -1.73259659e-03 6.69736662e-02 3.14050059e+00 2.81649067e+00 -3.25384742e+00 1.57109462e+00 1.46313324e-04 2.95377192e+00 8.22995989e-01 -1.42533066e+00 3.21487948e+00 -1.57081573e+00 3.14148045e+00 -1.55331089e+00 1.69608310e+00 4.37666956e-01 -1.17236607e-01 -1.52411964e+00 -3.73540521e-02 -1.57974496e+00 -3.13635864e+00 -1.57079635e+00 -1.15879870e+00 1.57057525e+00 2.56744226e+00 1.57079710e+00 -3.58278511e+00 1.57083191e+00 -1.02987413e+00 -1.57080858e+00 -2.39659905e-03 -1.57082401e+00 3.14160981e+00 -1.57080168e+00 -5.74732307e-06 -1.57078279e+00 -3.77398103e-02 -1.48702882e+00 2.99989240e+00 1.48141374e+00 -5.09970886e-04 1.57638212e+00 -4.50418823e-01 1.57091857e+00 1.55721754e+00 -1.57093160e+00 1.02091295e-03 -1.57075997e+00 5.47836639e-02 1.57078481e+00 -6.48295261e-01 1.57079626e+00 -2.29578347e+00 -2.58104150e-10 -5.80685178e-01 3.79527421e-03 5.16386128e+00 1.70000796e-04 1.12731852e+01 -1.37441857e+00 2.55446580e+00 -2.30673292e+00 -8.77468335e-01 1.63777009e+00 -1.94824357e+00 1.89377765e+00 -1.87741474e+00 3.14131566e+00 1.65916581e+01 -4.83744593e+00 4.78813820e+00 -2.97587178e+00 1.16410244e+01 3.14157953e+00 7.15481104e+00 1.69657635e+00 1.25361372e+01 -2.00667777e+00 1.52306214e+00 3.20158240e+00 2.02759070e+01 -5.95324222e-03 1.46770664e+01 -1.45082060e+00 1.98940822e+01] VQE eigenvalue: -199.9926392361886 VQE result: -85.99263923618861 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e8c0>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e560>} Optimization terminated successfully. Current function value: -193.983310 Iterations: 5 Function evaluations: 4156 fev:4156 E => -193.98331034194987 Finnished. VQE Total time: 38.74 s fev/s: 107.28 VQE solution parameters: [-1.57099609e+00 -3.14618738e+00 6.98886913e-01 -1.99708861e+00 -2.38434890e+00 -3.97975186e-02 1.57025267e+00 9.46754177e-05 3.13127311e+00 4.23632725e-01 -1.54871086e+00 -3.12833016e+00 -1.80159093e+01 -1.64726481e-01 4.71238842e+00 6.18370579e-07 1.95924270e+00 -1.61451298e+00 -3.14129418e+00 -3.13576090e+00 5.81678649e+00 8.99521263e-05 -3.03268850e+00 -1.66063596e+00 -1.60719825e+00 -3.15256117e+00 -5.24121096e+00 -2.93017594e+00 9.79073170e-02 -1.62742387e+00 1.57413199e+00 -1.42541845e-03 1.57079633e+00 -3.60479015e-01 -1.56843854e+00 3.13977158e+00 -1.57011664e+00 -3.80547188e-02 6.41301988e-01 5.15320135e-02 2.49979100e+00 3.09317335e+00 1.61398883e+00 2.42586522e+00 1.54248799e+00 2.24757977e+00 1.57081218e+00 -1.95957798e+00 -1.57079631e+00 -3.14159272e+00 -1.57079632e+00 -3.14159238e+00 1.57081855e+00 -3.14136971e+00 1.57080866e+00 1.08570301e-01 4.71255984e+00 -3.44206205e-01 1.57720451e+00 -1.24173064e-02 -1.57615239e+00 -3.22893817e+00 1.57079637e+00 1.01487196e+00 2.45312309e-08 6.53571047e+00 -8.14300168e-01 4.67480090e+00 -3.14189411e+00 9.38975668e-01 -1.56351960e+00 5.20580160e+00 -3.12922502e+00 6.20343630e+00 2.38923021e+00 2.18935213e+00 2.74174563e-07 1.31975728e+01 -1.61123477e+00 3.32846544e+00 1.57049778e+00 3.47409532e+00 2.03735332e+00 3.40212896e+00 -1.58054550e+00 4.45908375e+00 -3.17873746e+00 1.02378093e+01 2.57610575e+00 4.53411701e+00 -1.56526836e+00 1.35815643e+00 -2.02974454e-03 6.72609522e+00 -1.83996032e+00 1.00208516e+01] VQE eigenvalue: -193.98331034194987 VQE result: -79.98331034194987 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f9a0>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fc70>} Optimization terminated successfully. Current function value: -209.899015 Iterations: 5 Function evaluations: 4386 fev:4386 E => -209.89901495574048 Finnished. VQE Total time: 40.82 s fev/s: 107.45 VQE solution parameters: [-1.57016144e+00 -3.13561401e+00 -1.56564707e+00 2.23137754e-03 2.95765108e+00 -1.51705206e+00 -1.57079654e+00 -6.52410951e-09 -4.06988185e+00 1.55936086e+00 3.06391245e+00 -1.45745860e+00 -2.02970103e+01 1.00206632e-01 -1.57079633e+00 -3.51884310e-10 -3.14158574e+00 1.55725538e+00 -1.57079637e+00 6.24956357e-09 6.60983774e-05 -1.56574762e+00 -1.57079598e+00 -3.14159256e+00 5.63771246e-01 -3.45535542e+00 2.52762839e+00 -4.52082623e-03 -3.51155325e-01 1.54715089e-03 5.88531284e-02 1.58716404e+00 -1.57076805e+00 2.73449031e+00 -1.14917710e+00 1.08612913e+00 -1.99087076e+00 1.88821080e+00 -1.57079619e+00 9.28257799e-01 1.57079629e+00 1.91275953e-07 -1.57079632e+00 3.06593404e+00 -1.57079634e+00 6.78301117e-01 -4.79218821e-01 -1.42101964e+00 4.79218983e-01 -1.42101646e+00 -3.50742694e+00 2.28884871e+00 3.65838236e-01 -8.52720307e-01 1.56312268e+00 -3.33756455e+00 -1.57503610e+00 -1.62326518e-03 1.57143849e+00 4.48012566e-04 -1.57073902e+00 8.53634030e-06 1.57086296e+00 5.88445523e-02 4.82145323e-07 4.45346947e+00 -1.56182193e+00 2.59058518e+00 3.14159277e+00 1.95358056e+00 -1.56167053e+00 5.82313602e+00 1.57954832e+00 7.75230194e+00 -2.98351849e+00 4.67898529e+00 3.82153556e-08 5.09517688e-01 -1.57079624e+00 -7.66466642e+00 -3.14159265e+00 5.57787850e+00 1.57079645e+00 6.22839489e+00 3.14159274e+00 3.32435787e+00 -1.03804258e+00 9.81448547e+00 -2.18459387e+00 6.41250840e+00 1.92131551e+00 2.58070098e+00 1.57175614e+00 8.36977195e+00 -3.13784701e+00 2.68463850e+00] VQE eigenvalue: -209.8990149557406 VQE result: -95.8990149557406 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:Powell and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f250>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fbe0>} Optimization terminated successfully. Current function value: -193.994145 Iterations: 4 Function evaluations: 3237 fev:3237 E => -193.99414466987284 Finnished. VQE Total time: 30.14 s fev/s: 107.39 VQE solution parameters: [ 4.71239322e+00 3.14159676e+00 1.57079634e+00 -1.33433668e-06 1.57083801e+00 1.57078765e+00 1.57079592e+00 1.57080183e+00 -1.57079632e+00 1.66566110e-09 -1.24976857e+00 2.05932137e+00 -3.25651542e+00 5.48375523e-04 -1.33137253e-01 -3.14150539e+00 -3.24443928e+00 -1.49115197e+00 1.57078759e+00 -3.14159260e+00 -3.60233509e-04 1.57513633e+00 -1.57079741e+00 3.14158705e+00 -1.85459398e+00 5.23405787e-01 -4.75087723e-02 -1.80159975e+00 -1.99123589e+00 4.38711476e+00 1.57098146e+00 -5.99027221e-04 -1.57079403e+00 2.47695535e+00 6.49609358e-02 1.57081848e+00 1.57079633e+00 -1.53285246e-11 -3.07663176e+00 1.57079635e+00 -1.57070347e+00 -1.93097129e+00 -1.57078274e+00 -3.14162912e+00 1.57079629e+00 3.56605082e-06 1.57081205e+00 -3.14159527e+00 -1.57079027e+00 3.03907011e+00 2.98549301e+00 -1.92961643e+00 -2.98563325e+00 1.92956053e+00 -1.56840723e+00 1.04315501e+00 1.57170721e+00 -3.10734004e+00 -1.57100640e+00 3.14389248e+00 1.57169682e+00 1.12995299e+00 1.57079665e+00 -1.82486595e+00 3.14159862e+00 -1.21886619e+00 1.57079689e+00 1.43435230e+00 -1.57079668e+00 4.43502792e+00 -3.14159265e+00 5.53183467e+00 -1.10923458e+00 1.78727685e+00 -1.68571908e+00 2.70832952e+00 1.70393358e+00 4.66205144e+00 -1.56262815e+00 4.24349816e+00 3.14161373e+00 3.66509832e+00 1.57079657e+00 2.21484836e+00 3.14159283e+00 7.87919377e+00 3.73030689e+00 1.95305467e+00 1.55992889e+00 2.45456973e+00 1.27477146e+00 4.03169266e+00 -2.93858573e-04 4.22443474e+00 1.01384504e-05 2.08337891e+00] VQE eigenvalue: -193.99414466987284 VQE result: -79.99414466987284 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, {'method': 'Powell', 'tol': 0.001, 'options': {'maxiter': 10, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4fbe0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998, -95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874, -95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568, -95.95319254022507, -95.97353711991252, -95.94687354505373, -95.87459624709459, -79.90218124648075, -69.99652045764691, -85.99263923618861, -79.98331034194987, -95.8990149557406, -79.99414466987284] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]] VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e560>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f760>}
NIT NF F GTG 0 1 -2.905502654089142E+01 2.49774657E+03 tnc: fscale = 0.00717637
fev:582 E => -105.09646324247193
1 6 -1.050964632424720E+02 1.22854718E+03
fev:970 E => -124.93425517958339
2 10 -1.249342551795834E+02 6.79934986E+02
fev:6014 E => -144.27366579808384
3 62 -1.442736657980838E+02 4.92575099E+02
fev:11155 E => -147.32323284247224
4 115 -1.473232328424722E+02 4.66038767E+02
fev:11349 E => -150.24160673507146
5 117 -1.502416067350715E+02 3.84443317E+02
fev:11737 E => -151.38748330795346
6 121 -1.513874833079534E+02 3.67437732E+02
fev:12319 E => -160.6202446831773
7 127 -1.606202446831773E+02 2.87534751E+02
fev:12998 E => -165.8549063711606
8 134 -1.658549063711606E+02 2.47385825E+02
fev:13289 E => -166.87425026360597
9 137 -1.668742502636060E+02 2.32305501E+02
fev:13677 E => -167.5086732455597
10 141 -1.675086732455597E+02 2.17864757E+02
fev:18818 E => -172.162864244638
11 194 -1.721628642446380E+02 1.74101592E+02
fev:19012 E => -172.64365023077505
12 196 -1.726436502307751E+02 1.79084872E+02
fev:19982 E => -172.77084270932366
13 206 -1.727708427093237E+02 1.75773307E+02
fev:20661 E => -175.82530773391076
14 213 -1.758253077339109E+02 2.45927973E+02
fev:22601 E => -175.8264101273983
15 233 -1.758264101273982E+02 2.47795194E+02
fev:23668 E => -177.22133279272455
16 244 -1.772213327927246E+02 3.55635531E+02
fev:24056 E => -183.6299086722233
17 248 -1.836299086722233E+02 5.20405838E+02
fev:24250 E => -188.33841308266128
18 250 -1.883384130826613E+02 4.79404615E+02
Classical optimization exited with an error index: 1 fev:26578 E => -188.33845122673526 Finnished. VQE Total time: 246.90 s fev/s: 107.65 VQE solution parameters: [ 4.95658292e+00 2.18474623e+00 -1.30475691e-01 -1.18110048e+00 -6.04209700e-02 -4.47950352e-01 2.85830414e+00 -1.44321912e+00 -4.55413831e-01 4.57795488e-01 1.78791943e+00 1.36061156e-02 -1.48218054e+00 3.17315979e+00 1.14181606e-01 -1.74808866e+00 3.05932330e+00 2.34299879e+00 3.17992113e+00 3.07535435e+00 -1.14987444e+00 2.69629618e+00 2.49201622e+00 8.96108111e-01 -4.47715128e-02 -2.69034827e+00 -2.14340431e-01 4.70689005e-01 2.90576926e+00 2.60976392e+00 -8.31951489e-02 1.89885938e+00 -1.61839794e+00 2.50201774e+00 1.49364098e+00 -3.10330169e+00 1.82074710e+00 5.60563434e-02 1.65433214e+00 2.13575190e-01 -4.31807129e+00 3.79400661e-01 1.27717756e+00 -1.94877504e+00 -1.57004000e+00 3.09727418e+00 -1.55470279e+00 -4.03200131e-03 -1.57813293e+00 3.08255873e+00 1.55017899e+00 1.15048745e-02 -1.32708439e+00 -7.80847036e-01 -1.44819578e+00 3.13039368e+00 -1.60016615e+00 -1.04501143e-02 1.66976411e+00 -4.36246663e-02 1.54751072e+00 2.14457540e-02 1.49587953e+00 -3.55005130e-02 9.21676225e-02 -4.10770711e-01 1.54966666e+00 -7.99634277e-01 1.51948763e+00 -1.41872848e+00 -1.27256718e+00 -2.22685897e+00 -1.59277797e-01 9.97814532e-01 -1.68029712e-02 -2.78153211e+00 1.61509799e+00 2.15547794e+00 4.52242590e+00 1.87683527e+00 1.53547136e+00 2.34206087e+00 5.21878570e-01 -8.33771729e-01 2.01749340e+00 -1.47317741e+00 1.46214537e+00 1.59842386e+00 1.68886689e+00 4.75225810e-01 1.50598443e+00 4.17416855e-01 -1.48697540e+00 9.53756113e-01 3.55435244e+00 2.30891425e+00] VQE eigenvalue: -188.33845122673526 VQE result: -74.33845122673526 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4feb0>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4dea0>}
tnc: |fn-fn-1] = 3.81441e-05 -> convergence 19 274 -1.883384512267353E+02 4.79443281E+02 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 8.925003393074201E+00 2.57404796E+03 tnc: fscale = 0.0067314
fev:388 E => -54.00194526863894
1 4 -5.400194526863894E+01 1.22031777E+03
fev:5335 E => -104.87039435110013
2 55 -1.048703943511001E+02 1.48223959E+03
fev:5820 E => -115.95181735074475
3 60 -1.159518173507447E+02 1.21465105E+03
fev:6596 E => -128.6579164274706
4 68 -1.286579164274706E+02 8.54238308E+02
fev:7081 E => -132.2386550287592
5 73 -1.322386550287593E+02 7.90503912E+02
fev:7566 E => -135.13880283180964
6 78 -1.351388028318097E+02 7.65765385E+02
fev:12901 E => -139.42764595366134
7 133 -1.394276459536613E+02 6.26583031E+02
fev:13386 E => -139.96427202561796
8 138 -1.399642720256180E+02 6.21215818E+02
fev:13774 E => -140.26453007289675
9 142 -1.402645300728967E+02 6.36594554E+02
fev:14259 E => -145.4170626626123
10 147 -1.454170626626122E+02 4.49619274E+02
fev:19206 E => -145.42014560614294
11 198 -1.454201456061429E+02 4.50008794E+02
fev:24347 E => -156.40886266027448
12 251 -1.564088626602745E+02 3.27159214E+02
fev:24541 E => -159.69559956174987
13 253 -1.596955995617499E+02 3.07867178E+02
fev:24735 E => -159.77077192445608
14 255 -1.597707719244560E+02 2.97558615E+02
fev:25802 E => -159.79763128914297
15 266 -1.597976312891430E+02 2.92124382E+02
fev:27742 E => -163.2066191521982
16 286 -1.632066191521982E+02 2.91135255E+02
fev:27936 E => -163.50251859827208
17 288 -1.635025185982721E+02 3.21531511E+02
fev:28809 E => -163.5148630691494
18 297 -1.635148630691494E+02 3.11665983E+02
fev:29585 E => -163.71811717617743
19 305 -1.637181171761774E+02 3.40436234E+02
fev:30458 E => -164.67554116401237
20 314 -1.646755411640123E+02 4.67128109E+02
fev:32301 E => -165.6226595456063
21 333 -1.656226595456063E+02 3.24264650E+02
fev:33368 E => -167.22687910924057
22 344 -1.672268791092405E+02 4.82919088E+02
fev:33562 E => -167.28609288799004
23 346 -1.672860928879900E+02 4.50218101E+02
fev:34241 E => -167.3193979973003
24 353 -1.673193979973003E+02 4.77935025E+02
fev:34823 E => -170.39147018427778
25 359 -1.703914701842778E+02 3.37198876E+02
fev:36278 E => -170.44982770194085
26 374 -1.704498277019409E+02 3.31708843E+02
fev:37054 E => -170.4590567781142
27 382 -1.704590567781142E+02 3.33583826E+02
fev:37442 E => -171.65733243165062
28 386 -1.716573324316506E+02 2.93314880E+02
fev:37733 E => -177.00226162626038
29 389 -1.770022616262604E+02 3.11161317E+02
fev:38606 E => -177.7441698717302
30 398 -1.777441698717302E+02 3.56021623E+02
fev:38800 E => -177.7761050137975
31 400 -1.777761050137974E+02 3.63043090E+02
fev:39770 E => -177.78274687689733
32 410 -1.777827468768974E+02 3.60015906E+02
fev:40934 E => -179.1257437773694
33 422 -1.791257437773693E+02 3.47316281E+02
fev:41419 E => -179.17097447874184
34 427 -1.791709744787418E+02 3.46803866E+02
fev:42389 E => -179.17590052008117
35 437 -1.791759005200812E+02 3.46420146E+02
fev:43262 E => -179.7826500816352
36 446 -1.797826500816352E+02 3.50644315E+02
fev:43456 E => -179.89463562679032
37 448 -1.798946356267903E+02 3.42212521E+02
fev:44523 E => -179.89835528970605
38 459 -1.798983552897060E+02 3.40655536E+02
fev:45590 E => -180.19719356768925
39 470 -1.801971935676892E+02 3.37906666E+02
fev:46657 E => -180.2095364258571
40 481 -1.802095364258571E+02 3.38241166E+02
fev:47239 E => -182.68993159149733
41 487 -1.826899315914973E+02 3.90845952E+02
fev:52574 E => -183.02841706829628
42 542 -1.830284170682963E+02 4.45169273E+02
fev:53059 E => -183.46849088798078
43 547 -1.834684908879807E+02 4.70655782E+02
fev:54126 E => -183.49858294053826
44 558 -1.834985829405383E+02 4.53242995E+02
fev:54999 E => -183.50087360555008
45 567 -1.835008736055501E+02 4.57226245E+02
fev:56163 E => -183.558326165128
46 579 -1.835583261651280E+02 4.41907465E+02
fev:56939 E => -188.33403914275308
47 587 -1.883340391427531E+02 5.61449785E+02
fev:57521 E => -190.83049447199932
48 593 -1.908304944719993E+02 7.05087667E+02
fev:57715 E => -190.97097524551944
49 595 -1.909709752455194E+02 6.52810261E+02
fev:58491 E => -190.97349077097908
50 603 -1.909734907709790E+02 6.45922832E+02
fev:59558 E => -192.74715359026368
51 614 -1.927471535902637E+02 5.06330907E+02
fev:60043 E => -195.58781690724757
52 619 -1.955878169072476E+02 4.35654076E+02
fev:60237 E => -197.72435284819488
53 621 -1.977243528481949E+02 3.95873742E+02
fev:60722 E => -197.84162751161003
54 626 -1.978416275116101E+02 4.16580132E+02
fev:66057 E => -198.04320375315305
55 681 -1.980432037531531E+02 3.90174257E+02
fev:66833 E => -201.86396418921046
56 689 -2.018639641892105E+02 3.98274692E+02
fev:67609 E => -203.7844545951568
57 697 -2.037844545951568E+02 3.22996647E+02
fev:68094 E => -204.00516569901615
58 702 -2.040051656990161E+02 3.10669648E+02
fev:68773 E => -204.0054080263647
59 709 -2.040054080263648E+02 3.10978982E+02
fev:70034 E => -204.00759201168708
60 722 -2.040075920116871E+02 3.12490501E+02
fev:70422 E => -204.02423567513665
61 726 -2.040242356751366E+02 3.09595255E+02
fev:71101 E => -204.2460356615863
62 733 -2.042460356615862E+02 2.87973156E+02
fev:71392 E => -204.96686836701443
63 736 -2.049668683670145E+02 2.32524986E+02
fev:75563 E => -205.20827335285674
64 779 -2.052082733528566E+02 2.47701322E+02
fev:75951 E => -205.61520549498437
65 783 -2.056152054949845E+02 2.21818615E+02
fev:76145 E => -205.6255864523226
66 785 -2.056255864523226E+02 2.20363056E+02
fev:77018 E => -205.74716300679938
67 794 -2.057471630067994E+02 2.24369219E+02
fev:78279 E => -206.2537022552621
68 807 -2.062537022552621E+02 2.05156611E+02
fev:79152 E => -206.32125025552176
69 816 -2.063212502555218E+02 2.00372549E+02
fev:79637 E => -206.32145955820693
70 821 -2.063214595582069E+02 2.00309584E+02
fev:80704 E => -206.3273815463915
71 832 -2.063273815463915E+02 1.99538836E+02
fev:81577 E => -206.34407301762351
72 841 -2.063440730176235E+02 1.98912947E+02
fev:82353 E => -206.46745489695374
73 849 -2.064674548969537E+02 1.89995078E+02
fev:87882 E => -206.47661783022087
74 906 -2.064766178302209E+02 1.89708021E+02
fev:88367 E => -206.8375510587684
75 911 -2.068375510587684E+02 1.43718590E+02
fev:89531 E => -206.85098892354276
76 923 -2.068509889235427E+02 1.49684608E+02
fev:91180 E => -206.8760161163972
77 940 -2.068760161163972E+02 1.40129267E+02
fev:92247 E => -207.21574737313452
78 951 -2.072157473731346E+02 1.37101022E+02
fev:92441 E => -207.7820609129286
79 953 -2.077820609129286E+02 9.14004366E+01
fev:92635 E => -207.8019811076718
80 955 -2.078019811076718E+02 8.82201985E+01
Classical optimization exited with an error index: 1 fev:93120 E => -207.80198517706089 Finnished. VQE Total time: 850.72 s fev/s: 109.46 VQE solution parameters: [ 1.60467237 -2.15773494 0.07731918 -0.30067854 1.58195702 1.55042364 -1.56602777 3.15449286 -2.08744984 -1.51092326 1.10513237 -1.0369572 1.56345674 -3.13940264 -1.37644054 1.47120908 -3.39242569 0.78940925 1.51060969 -0.05325335 -0.01905065 -2.62587297 1.56495025 -0.01855801 0.27654917 -0.69455429 -1.56498232 3.13337321 -2.5281856 -4.64385412 3.10262841 -1.75450211 -1.58285094 -0.0739881 1.58529041 3.16293515 -2.54295041 -1.55826241 -1.73350118 -1.06716036 -1.51688055 0.02330137 -1.46378899 -2.13466661 -1.47781851 -1.74423534 -1.57992682 3.15635602 -1.68720769 -0.14834282 0.93735722 1.51239591 4.03024698 -1.58102155 0.83704124 1.88332628 -2.31562377 1.74736479 1.56755767 -0.60048165 -1.54932456 0.01164979 -1.61179318 -3.15241781 0.01144581 -0.52799957 1.59121236 0.07229743 -0.11414775 -0.87818577 1.62099142 -1.62111705 1.09040973 -2.94097176 -0.00649604 -0.9918412 -1.63859969 -1.3463474 -1.38100502 2.9072991 -0.29297957 -1.27373174 -1.68998895 2.87491602 -0.02733217 0.70876653 1.43307142 -0.67296043 -0.0358571 0.94824204 -1.59090843 -1.89180396 -1.58044097 -1.62310244 1.63463236 -0.74321869] VQE eigenvalue: -207.8019851770609 VQE result: -93.80198517706091 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d000>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e200>}
tnc: |fn-fn-1] = 4.06939e-06 -> convergence 81 960 -2.078019851770609E+02 8.82507660E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 3.392653924848570E+01 3.76538033E+03 tnc: fscale = 0.00562603
fev:5044 E => -77.55185962495496
1 52 -7.755185962495494E+01 1.62989531E+03
fev:5529 E => -84.432310435459
2 57 -8.443231043545896E+01 1.54734986E+03
fev:5820 E => -98.38964977511492
3 60 -9.838964977511493E+01 1.23350326E+03
fev:6305 E => -108.88412321738429
4 65 -1.088841232173843E+02 9.20819836E+02
fev:11543 E => -111.98668978080855
5 119 -1.119866897808085E+02 8.33813213E+02
fev:12028 E => -119.02309309056146
6 124 -1.190230930905615E+02 6.53932118E+02
fev:12513 E => -121.67893215930897
7 129 -1.216789321593090E+02 6.55738458E+02
fev:12998 E => -123.12087155990626
8 134 -1.231208715599062E+02 7.93974370E+02
fev:13483 E => -123.50040805076856
9 139 -1.235004080507685E+02 7.24310020E+02
fev:14744 E => -124.710454247975
10 152 -1.247104542479750E+02 7.57666483E+02
fev:15229 E => -130.05170123710514
11 157 -1.300517012371051E+02 5.28318607E+02
fev:20564 E => -130.37418005193317
12 212 -1.303741800519331E+02 5.44537310E+02
fev:20855 E => -130.42707857127309
13 215 -1.304270785712731E+02 5.65157604E+02
fev:21631 E => -131.10506940847495
14 223 -1.311050694084749E+02 5.02501951E+02
fev:22213 E => -138.30193041505532
15 229 -1.383019304150553E+02 6.74083522E+02
fev:22698 E => -141.09859903956448
16 234 -1.410985990395645E+02 4.61555749E+02
fev:23765 E => -141.7510518175091
17 245 -1.417510518175091E+02 4.55827519E+02
fev:24347 E => -141.99768188004484
18 251 -1.419976818800448E+02 4.91371891E+02
fev:25608 E => -145.9519932580062
19 264 -1.459519932580062E+02 2.97958080E+02
fev:26190 E => -149.30429191220333
20 270 -1.493042919122033E+02 3.06641410E+02
fev:26772 E => -149.80188069746777
21 276 -1.498018806974678E+02 2.73037178E+02
fev:27548 E => -149.86002974603923
22 284 -1.498600297460392E+02 2.72897060E+02
fev:28906 E => -149.88897544747454
23 298 -1.498889754474745E+02 2.70935032E+02
fev:29779 E => -150.7435032064629
24 307 -1.507435032064629E+02 2.45260937E+02
fev:32204 E => -155.54510642906024
25 332 -1.555451064290602E+02 1.57888797E+02
fev:32398 E => -155.62455996776518
26 334 -1.556245599677652E+02 1.59208558E+02
fev:33077 E => -158.85297192536845
27 341 -1.588529719253684E+02 6.31791981E+01
fev:33950 E => -159.7030501023888
28 350 -1.597030501023888E+02 5.12630450E+01
fev:34435 E => -159.71583366892946
29 355 -1.597158336689295E+02 5.08595168E+01
fev:35890 E => -159.72430620094485
30 370 -1.597243062009448E+02 5.08416787E+01
fev:36957 E => -160.70363615865267
31 381 -1.607036361586528E+02 6.31315558E+01
fev:37151 E => -160.84481604555543
32 383 -1.608448160455555E+02 5.34155050E+01
fev:37345 E => -160.84885811346734
33 385 -1.608488581134674E+02 5.30424510E+01
fev:37830 E => -160.84902247281627
34 390 -1.608490224728162E+02 5.29738196E+01
fev:38412 E => -161.30967863890152
35 396 -1.613096786389015E+02 4.72072420E+01
fev:38800 E => -162.8373643749865
36 400 -1.628373643749865E+02 3.68484555E+01
fev:38994 E => -163.04834957504846
37 402 -1.630483495750485E+02 4.23694686E+01
fev:39867 E => -163.05050890612407
38 411 -1.630505089061240E+02 4.37609767E+01
Classical optimization exited with an error index: 1 fev:40837 E => -163.0505977627868 Finnished. VQE Total time: 354.48 s fev/s: 115.20 VQE solution parameters: [ 1.61410632e+00 1.08961457e-02 -7.56331315e-02 -5.37240307e-01 1.55624333e+00 -7.13735432e-02 1.54810766e+00 -3.12512187e+00 -5.56006484e-01 -1.35865028e+00 -1.63020083e+00 -2.02207714e-02 -4.96312919e-02 5.35365380e-01 2.19556539e+00 3.11146805e+00 -7.85179790e-02 -1.24424791e+00 -1.35127257e-01 2.00162623e+00 2.77318644e+00 2.50874306e+00 -2.40274845e+00 1.56507666e+00 1.63166099e+00 -3.11459107e+00 5.42773965e-01 2.41003324e+00 -7.92048167e-01 -3.43793752e-01 -1.21058825e+00 -2.75696990e+00 1.58666190e+00 -3.17799794e+00 1.57492544e+00 -3.11657440e-01 -1.60759531e+00 -2.99195766e+00 1.34539421e+00 1.75238251e+00 -1.17606471e+00 4.31241085e+00 -3.20734528e+00 9.86099526e-01 -7.77016775e-01 -2.64050601e+00 -1.52347197e+00 -6.15592439e-02 1.55931944e+00 4.29969627e-03 -1.51445710e+00 1.49916353e-02 1.52223758e+00 -1.31203462e-01 1.64984267e+00 -2.43026179e+00 -1.87038974e+00 -3.55509169e+00 1.36510904e+00 -8.10924801e-02 1.64321395e+00 2.60075442e+00 1.54034636e+00 -3.17029769e+00 5.35493396e-03 1.09594520e+00 -1.27115291e-01 1.15588396e+00 3.13286718e+00 9.17970989e-01 -1.44153767e+00 2.17016008e-01 -3.09111905e-01 5.55353288e-01 -1.60140990e+00 -2.35269561e+00 -1.03692872e+00 1.80318539e+00 1.55490328e+00 -1.11341217e+00 1.42039596e+00 -2.58042412e+00 -2.16194290e+00 3.27543391e+00 -1.53186360e+00 -6.60010387e-01 2.33856461e-01 -1.16271621e+00 -1.27580323e+00 -1.51965019e+00 -4.09844915e+00 -1.93409436e+00 3.31504710e-01 -2.84674882e+00 -1.55960467e+00 -9.19563183e-01] VQE eigenvalue: -163.0505977627868 VQE result: -49.05059776278679 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 0, x20 = 0, x21 = 1, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4c670>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x78b0cb8981f0>}
tnc: |fn-fn-1] = 8.88567e-05 -> convergence 39 421 -1.630505977627868E+02 4.35225161E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 8.759221776173839E-01 1.74668520E+03 tnc: fscale = 0.00858814
fev:970 E => -64.16171754335232
1 10 -6.416171754335231E+01 1.14954808E+03
fev:5820 E => -100.868377348504
2 60 -1.008683773485040E+02 4.74457552E+02
fev:6014 E => -102.78679158416598
3 62 -1.027867915841660E+02 3.91106342E+02
fev:6790 E => -110.34824344434016
4 70 -1.103482434443402E+02 4.06606397E+02
fev:12125 E => -122.87989864684567
5 125 -1.228798986468456E+02 4.77312369E+02
fev:12707 E => -124.90797937905735
6 131 -1.249079793790574E+02 3.40121990E+02
fev:13289 E => -131.0311202387813
7 137 -1.310311202387813E+02 2.97146670E+02
fev:13483 E => -131.47435125130676
8 139 -1.314743512513068E+02 2.93316557E+02
fev:14259 E => -131.86450819901057
9 147 -1.318645081990106E+02 2.84051052E+02
fev:14841 E => -132.0295019924313
10 153 -1.320295019924313E+02 2.62970637E+02
fev:15714 E => -132.1431821553558
11 162 -1.321431821553558E+02 2.64497527E+02
fev:16684 E => -132.15945078381924
12 172 -1.321594507838192E+02 2.66019788E+02
fev:17266 E => -132.4408728286969
13 178 -1.324408728286969E+02 2.75217963E+02
fev:18333 E => -139.66161743874233
14 189 -1.396616174387423E+02 1.73380648E+02
fev:18527 E => -142.01593993294534
15 191 -1.420159399329453E+02 8.04792721E+01
fev:19012 E => -142.02195939670736
16 196 -1.420219593967074E+02 8.20833249E+01
fev:19400 E => -142.16343560068782
17 200 -1.421634356006878E+02 7.37658929E+01
fev:25026 E => -142.18044536754854
18 258 -1.421804453675485E+02 7.25682110E+01
fev:25802 E => -142.18244862401104
19 266 -1.421824486240110E+02 7.21265852E+01
fev:27160 E => -143.66645582976653
20 280 -1.436664558297666E+02 7.01181738E+01
fev:27354 E => -143.97940402345773
21 282 -1.439794040234577E+02 6.68023937E+01
fev:28324 E => -143.98724812850722
22 292 -1.439872481285072E+02 6.80187532E+01
fev:28809 E => -143.9877620811356
23 297 -1.439877620811356E+02 6.85307036E+01
fev:29585 E => -143.9912243930301
24 305 -1.439912243930301E+02 6.73279616E+01
fev:29973 E => -144.22039264702474
25 309 -1.442203926470247E+02 7.96640407E+01
fev:33659 E => -144.59217580992848
26 347 -1.445921758099285E+02 1.08353728E+02
fev:34144 E => -145.58066824651075
27 352 -1.455806682465108E+02 7.35974416E+01
fev:34726 E => -145.68457071492918
28 358 -1.456845707149292E+02 8.40615132E+01
fev:35502 E => -145.69811112001506
29 366 -1.456981111200151E+02 8.33344541E+01
fev:35890 E => -145.69993952952962
30 370 -1.456999395295297E+02 8.31256967E+01
fev:37054 E => -145.99065945956443
31 382 -1.459906594595644E+02 7.39754723E+01
fev:37539 E => -146.40502632669234
32 387 -1.464050263266924E+02 6.45918711E+01
fev:38412 E => -146.41554598911287
33 396 -1.464155459891128E+02 6.68246801E+01
fev:39188 E => -146.50714301439538
34 404 -1.465071430143954E+02 6.35882673E+01
fev:39770 E => -146.6649732714136
35 410 -1.466649732714136E+02 7.38765651E+01
fev:43165 E => -146.76270167973993
36 445 -1.467627016797399E+02 6.38855834E+01
fev:43456 E => -147.12723882641555
37 448 -1.471272388264155E+02 7.79458924E+01
fev:43941 E => -147.15834505568307
38 453 -1.471583450556831E+02 8.59764188E+01
fev:44717 E => -147.2174783677192
39 461 -1.472174783677191E+02 9.73424066E+01
fev:45590 E => -147.6231628384831
40 470 -1.476231628384831E+02 1.11919732E+02
fev:45784 E => -147.7482002633828
41 472 -1.477482002633828E+02 9.68163481E+01
fev:45978 E => -147.75558297170795
42 474 -1.477555829717080E+02 9.35606632E+01
fev:46657 E => -147.75738566919696
43 481 -1.477573856691970E+02 9.47108579E+01
fev:47336 E => -147.80876434505106
44 488 -1.478087643450511E+02 8.12340065E+01
fev:48597 E => -147.81073111588347
45 501 -1.478107311158834E+02 8.27954755E+01
fev:49179 E => -147.8119220059231
46 507 -1.478119220059231E+02 8.43984948E+01
fev:49761 E => -147.81205497449358
47 513 -1.478120549744935E+02 8.39937082E+01
fev:50440 E => -147.8129842476057
48 520 -1.478129842476057E+02 8.26052126E+01
fev:55387 E => -147.83143738935473
49 571 -1.478314373893547E+02 7.78167815E+01
fev:56745 E => -147.84031327144382
50 585 -1.478403132714438E+02 7.74376299E+01
fev:57909 E => -147.84182100992862
51 597 -1.478418210099287E+02 7.86111727E+01
fev:58782 E => -147.84245801518907
52 606 -1.478424580151891E+02 7.91036230E+01
fev:59558 E => -147.84275830577258
53 614 -1.478427583057726E+02 7.90059111E+01
fev:59946 E => -147.84692109810257
54 618 -1.478469210981025E+02 7.90585893E+01
fev:60819 E => -147.94930132847165
55 627 -1.479493013284716E+02 7.46379004E+01
fev:61304 E => -148.0573740763953
56 632 -1.480573740763953E+02 6.47948090E+01
fev:62177 E => -148.06102642650487
57 641 -1.480610264265049E+02 6.40115070E+01
Classical optimization exited with an error index: 1 fev:62953 E => -148.06108509207746 Finnished. VQE Total time: 549.96 s fev/s: 114.47 VQE solution parameters: [-7.23108601e-01 -1.38741198e+00 1.83446264e+00 -4.19735861e-01 1.44894390e+00 2.55606149e+00 -3.77266592e-01 1.85493224e-01 1.57874397e+00 -9.53411808e-03 -1.56743818e+00 1.59669787e+00 3.41803310e+00 2.92690276e+00 7.42961473e-01 -9.78730832e-01 2.68654652e+00 2.88806153e-01 -3.61051919e+00 -2.36935832e+00 2.73993056e-01 -1.70411539e+00 -3.04546902e+00 -6.44315740e-01 1.17818243e-01 -2.31342327e-01 1.03755716e-01 7.01792267e-01 8.72302955e-01 -2.56288444e-03 -9.61548368e-01 3.26127578e+00 -1.96851464e+00 1.86529077e+00 -1.32326835e-01 -2.69574764e-01 -4.07198890e+00 3.03535463e+00 1.08296487e+00 2.97648741e+00 -1.47157451e-01 1.59008635e+00 -1.56673704e+00 -4.59811289e-03 -1.46102808e+00 -2.96881571e+00 3.94472755e+00 -2.20454892e+00 -1.52093786e+00 -3.00578355e+00 -1.55146928e+00 6.10598948e-02 -1.61962280e+00 3.15025171e+00 1.55492172e+00 -3.15690969e+00 -1.62081989e+00 -6.08201764e-02 1.52893635e+00 -3.93278308e-02 2.03371828e+00 -2.47213738e-01 -1.64190093e-01 -8.44436803e-01 1.25147924e+00 -2.27691001e+00 2.08599987e+00 -1.62865314e+00 -1.46058593e+00 3.42620800e+00 3.07471747e+00 2.27444938e+00 -4.70910943e+00 -1.85655377e+00 -1.45638006e+00 2.03270274e+00 1.82795504e+00 5.59121893e-01 1.97193419e+00 2.19567164e+00 -1.53499272e+00 -2.51085742e+00 1.51601903e+00 -2.70147019e+00 -1.49200751e+00 -2.77600819e+00 -1.59533992e+00 2.08420042e+00 1.53451893e+00 -1.85084592e+00 -2.52111439e+00 1.16249152e+00 3.08761691e+00 3.72194179e-02 2.24244112e+00 2.59800215e-02] VQE eigenvalue: -148.06108509207752 VQE result: -34.06108509207752 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4df30>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4dc60>}
tnc: |fn-fn-1] = 5.86656e-05 -> convergence 58 649 -1.480610850920775E+02 6.39425828E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 2.020370123014951E+01 1.62557094E+03 tnc: fscale = 0.00988601
fev:582 E => -33.84940195195426
1 6 -3.384940195195426E+01 1.03914730E+03
fev:5432 E => -53.31782990426038
2 56 -5.331782990426038E+01 8.33483231E+02
fev:6014 E => -66.2764839306195
3 62 -6.627648393061949E+01 9.34369306E+02
fev:11058 E => -96.58941050575994
4 114 -9.658941050575991E+01 6.60027825E+02
fev:16102 E => -104.77094998659828
5 166 -1.047709499865983E+02 4.15866749E+02
fev:20273 E => -104.96058606835534
6 209 -1.049605860683553E+02 4.21235284E+02
fev:20564 E => -105.6751996521209
7 212 -1.056751996521209E+02 4.23732857E+02
fev:21146 E => -109.2832505734681
8 218 -1.092832505734681E+02 3.39387228E+02
fev:21728 E => -111.28086905246732
9 224 -1.112808690524673E+02 3.14892445E+02
fev:22310 E => -112.39913044065871
10 230 -1.123991304406587E+02 2.79175510E+02
fev:22795 E => -112.58637929514208
11 235 -1.125863792951421E+02 2.72057800E+02
fev:23474 E => -114.78347925094376
12 242 -1.147834792509438E+02 2.14674444E+02
Classical optimization exited with an error index: 1 fev:26966 E => -114.78351825151482 Finnished. VQE Total time: 250.05 s fev/s: 107.84 VQE solution parameters: [ 1.46956734e+00 1.57871161e+00 1.55806651e+00 1.50205258e+00 3.57482656e+00 1.34017069e+00 2.57625733e+00 -2.39449185e+00 4.08193841e-02 8.56080897e-01 1.40656576e+00 1.57783375e+00 1.63640544e+00 -3.41921427e-03 9.56538663e-01 2.49385912e+00 1.71395892e+00 -7.16209151e-01 -2.89502608e+00 -4.37694008e+00 1.97372973e-01 -2.05428769e+00 -2.92663660e+00 2.99241134e+00 3.95830650e+00 -1.34103585e+00 -1.58266564e-01 1.48427266e+00 -3.40831648e+00 9.41403879e-01 -1.95894670e+00 -4.12228592e-01 1.61232630e+00 -2.62695309e+00 -3.10831726e+00 -9.86341047e-02 3.80690931e-02 1.87019191e+00 2.54894183e+00 7.59803206e-01 -1.78745301e+00 3.11028239e+00 -4.14337852e-01 1.59857093e+00 -6.60586404e-01 -5.54821495e-01 8.94692484e-02 -2.19159809e+00 -1.61591073e+00 2.17661644e-01 1.54815561e+00 -3.18699757e+00 3.56215017e-01 4.54103676e-01 4.63541447e-02 1.74947942e+00 2.20264036e-01 6.13153034e-01 2.77834348e-01 -5.49374719e-02 -6.48408366e-01 -5.53084755e-01 -2.16063167e+00 1.62695451e+00 7.84916148e-01 1.93397690e-01 -2.94605065e+00 2.12945645e+00 2.09799693e+00 3.02387341e+00 3.75943695e+00 1.09750517e+00 1.35174846e+00 -1.68793323e-01 1.80522296e+00 -2.10785648e+00 1.76582629e+00 -1.24467213e-01 1.27426047e+00 -1.47696849e-03 1.41018660e+00 -1.38394720e-01 -3.56527243e+00 2.48471357e+00 2.63169449e-02 2.25822729e+00 3.17875765e+00 3.23431507e+00 1.71452504e+00 -1.36057976e+00 -2.48453249e+00 5.62156197e+00 3.25244913e+00 2.17643763e+00 5.97590775e-01 -4.45549766e-01] VQE eigenvalue: -114.78351825151482 VQE result: -0.7835182515148205 Solution: 4 x00 = 0, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 1, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dfc0>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4dcf0>}
tnc: |fn-fn-1] = 3.90006e-05 -> convergence 13 278 -1.147835182515148E+02 2.14829711E+02 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 6.325505749030852E+00 1.30912353E+03 tnc: fscale = 0.00936338
fev:388 E => -40.90554467781428
1 4 -4.090554467781428E+01 1.20705059E+03
fev:776 E => -79.59996008341692
2 8 -7.959996008341693E+01 1.34720243E+03
fev:1067 E => -102.73574312900452
3 11 -1.027357431290045E+02 9.96971630E+02
fev:6208 E => -128.14409819883693
4 64 -1.281440981988369E+02 5.36429805E+02
fev:11446 E => -141.27178685084718
5 118 -1.412717868508472E+02 4.87946829E+02
fev:16587 E => -147.46222609422205
6 171 -1.474622260942220E+02 3.63514026E+02
fev:16878 E => -147.9929229024358
7 174 -1.479929229024358E+02 3.23891716E+02
fev:17169 E => -150.3824601841565
8 177 -1.503824601841565E+02 2.43915612E+02
fev:22310 E => -157.34063680773556
9 230 -1.573406368077356E+02 2.17649118E+02
fev:22892 E => -157.776263528819
10 236 -1.577762635288190E+02 2.11430387E+02
fev:23668 E => -158.62149815159214
11 244 -1.586214981515921E+02 1.92379615E+02
fev:24056 E => -161.61607509215466
12 248 -1.616160750921547E+02 1.31492898E+02
fev:24250 E => -162.5342582828652
13 250 -1.625342582828652E+02 1.30284612E+02
fev:29682 E => -164.12530255708492
14 306 -1.641253025570850E+02 1.22475369E+02
fev:30361 E => -164.4299182424147
15 313 -1.644299182424147E+02 1.33734634E+02
fev:30652 E => -164.5055122963721
16 316 -1.645055122963720E+02 1.22481989E+02
fev:31137 E => -164.64467768377003
17 321 -1.646446776837700E+02 1.23319372E+02
fev:36472 E => -164.78062176091137
18 376 -1.647806217609114E+02 1.12383259E+02
fev:36666 E => -164.81730042716762
19 378 -1.648173004271677E+02 1.07223750E+02
fev:37151 E => -164.85238680790025
20 383 -1.648523868079001E+02 1.02108442E+02
fev:37636 E => -164.8814636127348
21 388 -1.648814636127347E+02 1.00980027E+02
fev:38800 E => -164.88332628448603
22 400 -1.648833262844861E+02 1.00891662E+02
fev:39479 E => -164.888747744842
23 407 -1.648887477448420E+02 1.00877910E+02
fev:40643 E => -166.00566678744684
24 419 -1.660056667874468E+02 8.85209736E+01
fev:40837 E => -166.148492759077
25 421 -1.661484927590770E+02 8.08334295E+01
fev:42001 E => -166.1510971118818
26 433 -1.661510971118819E+02 8.04614756E+01
fev:42583 E => -166.15568591689237
27 439 -1.661556859168923E+02 7.99315306E+01
fev:43553 E => -166.24823126222594
28 449 -1.662482312622260E+02 7.78060735E+01
fev:44232 E => -166.48056341963428
29 456 -1.664805634196343E+02 7.39378269E+01
fev:44426 E => -166.5816670990396
30 458 -1.665816670990396E+02 7.31907437E+01
fev:45202 E => -166.58227916104778
31 466 -1.665822791610478E+02 7.37646037E+01
fev:45784 E => -166.58244343276826
32 472 -1.665824434327683E+02 7.35290141E+01
fev:46172 E => -166.58799561512342
33 476 -1.665879956151234E+02 7.18890814E+01
fev:46851 E => -166.77752130290477
34 483 -1.667775213029048E+02 7.73023728E+01
fev:47627 E => -169.16235169317295
35 491 -1.691623516931730E+02 7.52205337E+01
fev:47821 E => -169.6518137634982
36 493 -1.696518137634982E+02 6.19059176E+01
fev:48597 E => -169.67807377741505
37 501 -1.696780737774151E+02 6.62440998E+01
fev:49373 E => -169.6807851719034
38 509 -1.696807851719034E+02 6.81215277E+01
fev:49955 E => -169.71347053505454
39 515 -1.697134705350545E+02 5.92854284E+01
fev:50828 E => -169.96248764550828
40 524 -1.699624876455083E+02 6.44965909E+01
fev:51022 E => -170.33117742265557
41 526 -1.703311774226556E+02 4.43841601E+01
Classical optimization exited with an error index: 1 fev:51216 E => -170.3312736310346 Finnished. VQE Total time: 444.47 s fev/s: 115.23 VQE solution parameters: [-1.85199552e-01 -2.97219041e+00 -7.14840960e-01 4.65363866e-01 2.82246952e+00 2.92656937e+00 -1.55247923e+00 -3.23737791e+00 2.42652640e+00 1.58557364e+00 -2.24333069e+00 -1.51808780e+00 1.57510103e+00 -3.08854448e+00 3.06594709e+00 2.85015271e+00 1.55751524e+00 -3.13748308e+00 -1.99957863e+00 -1.41142415e+00 -4.67871896e+00 -1.52835367e+00 -4.70405641e+00 3.13194121e+00 4.22230150e-01 -3.61774563e+00 2.82349517e+00 -8.15642744e-01 -3.14214773e+00 1.88343784e-02 3.14751083e+00 -2.45345265e+00 -3.89387773e-01 2.93449627e-02 -4.63939250e+00 1.10218233e+00 2.44394769e+00 -2.15312074e+00 -1.60723776e+00 -7.27188977e-01 4.72029991e+00 -3.06234242e+00 1.73435817e+00 -6.75089580e-01 -1.43275145e+00 -1.63225097e+00 1.34927043e+00 1.50050062e+00 1.05190108e+00 -1.20840700e+00 4.69312402e+00 -3.10982676e+00 9.11783379e-01 -1.63977757e+00 4.60384376e+00 2.91053793e+00 1.62479254e+00 -3.08635223e+00 -1.57410109e+00 -4.31229099e-02 -1.57575362e+00 4.67347608e-02 -1.56331089e+00 -3.15920177e+00 -4.79924872e+00 -3.42204518e+00 -2.34947194e+00 -4.96267923e-01 1.64471542e-02 1.50293929e+00 -1.47373533e+00 -6.24334800e-01 1.52887170e+00 -2.13998231e+00 3.94478107e-02 -4.92036448e-01 1.50060918e+00 -2.48408720e+00 4.09893565e-03 -5.33287980e-01 1.39638944e+00 -1.09645289e+00 -1.50070278e+00 -1.01790970e+00 2.16103250e-02 3.29305156e+00 1.85605282e+00 -1.27997809e+00 1.53358274e+00 1.14217842e+00 1.56678297e+00 -2.12633969e-01 -1.57632661e+00 1.39166565e+00 -1.55545618e-02 -1.57727135e+00] VQE eigenvalue: -170.33127363103466 VQE result: -56.33127363103466 Solution: 5 x00 = 1, x01 = 1, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dbd0>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d3f0>}
tnc: |fn-fn-1] = 9.62084e-05 -> convergence 42 528 -1.703312736310347E+02 4.42119458E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 7.707052539946370E+00 2.74341642E+03 tnc: fscale = 0.00678047
fev:1843 E => -60.538302839499806
1 19 -6.053830283949981E+01 1.44770426E+03
fev:2328 E => -87.64276630334115
2 24 -8.764276630334115E+01 1.29403985E+03
fev:7372 E => -132.98644500211432
3 76 -1.329864450021143E+02 4.79053384E+02
fev:7566 E => -135.7599368285619
4 78 -1.357599368285619E+02 4.49742635E+02
fev:12804 E => -139.0267070071646
5 132 -1.390267070071646E+02 3.39728137E+02
fev:12998 E => -139.2049201175384
6 134 -1.392049201175384E+02 3.22003850E+02
fev:13677 E => -141.4210825761306
7 141 -1.414210825761306E+02 2.66265702E+02
fev:14356 E => -145.86800188669474
8 148 -1.458680018866947E+02 2.74458931E+02
fev:14550 E => -146.83538123564006
9 150 -1.468353812356401E+02 2.49336768E+02
fev:14938 E => -147.47344952279354
10 154 -1.474734495227935E+02 2.75650671E+02
fev:20370 E => -150.21714908296283
11 210 -1.502171490829628E+02 1.56482437E+02
fev:20952 E => -152.18161379466983
12 216 -1.521816137946698E+02 1.89290730E+02
fev:21534 E => -152.21920760014547
13 222 -1.522192076001455E+02 1.80167228E+02
fev:22116 E => -152.22310516624933
14 228 -1.522231051662493E+02 1.77178831E+02
fev:23086 E => -152.32488936682176
15 238 -1.523248893668217E+02 1.59757119E+02
fev:28227 E => -154.5861043432192
16 291 -1.545861043432192E+02 1.27752473E+02
fev:28712 E => -154.93638679888755
17 296 -1.549363867988875E+02 1.55946147E+02
fev:29779 E => -154.95426461664638
18 307 -1.549542646166463E+02 1.48104310E+02
fev:30555 E => -154.95876034199358
19 315 -1.549587603419936E+02 1.52195555E+02
fev:31525 E => -155.09887142704525
20 325 -1.550988714270453E+02 1.35441394E+02
fev:31816 E => -155.4569800936725
21 328 -1.554569800936725E+02 1.13466878E+02
fev:32301 E => -156.77837636898693
22 333 -1.567783763689869E+02 1.15889645E+02
fev:32495 E => -156.83360060244172
23 335 -1.568336006024417E+02 1.20211686E+02
fev:32786 E => -156.83582977366123
24 338 -1.568358297736613E+02 1.18859325E+02
fev:33368 E => -156.84399663669438
25 344 -1.568439966366944E+02 1.15441135E+02
fev:34338 E => -156.98048666821495
26 354 -1.569804866682149E+02 1.22632102E+02
fev:35405 E => -158.10236495159054
27 365 -1.581023649515905E+02 8.15208523E+01
fev:36763 E => -158.12093304987425
28 379 -1.581209330498742E+02 8.18447110E+01
fev:37345 E => -158.12132867457555
29 385 -1.581213286745756E+02 8.19950802E+01
fev:38024 E => -158.12396098313576
30 392 -1.581239609831358E+02 8.16188878E+01
fev:39285 E => -158.82504346538133
31 405 -1.588250434653814E+02 8.30269515E+01
fev:40449 E => -158.83563159141517
32 417 -1.588356315914151E+02 8.56239670E+01
fev:41225 E => -158.87912966097093
33 425 -1.588791296609709E+02 8.61710525E+01
fev:41807 E => -158.92116741867088
34 431 -1.589211674186709E+02 8.01738183E+01
fev:42001 E => -158.9226029360969
35 433 -1.589226029360968E+02 8.03676139E+01
fev:43650 E => -158.9565613594804
36 450 -1.589565613594804E+02 8.04936808E+01
fev:44717 E => -159.02811263591465
37 461 -1.590281126359146E+02 7.93644499E+01
fev:45493 E => -160.22081805988444
38 469 -1.602208180598844E+02 5.89365707E+01
fev:45687 E => -160.38593152065246
39 471 -1.603859315206525E+02 6.06824563E+01
fev:46560 E => -160.39001332606864
40 480 -1.603900133260687E+02 6.12900768E+01
Classical optimization exited with an error index: 1 fev:47045 E => -160.39010288890995 Finnished. VQE Total time: 399.40 s fev/s: 117.79 VQE solution parameters: [-4.06332583e-01 3.93158844e+00 -2.50548974e+00 -4.72512599e-01 -1.18913559e-01 -2.70467705e-01 -2.09697345e+00 -3.55212384e+00 1.50427142e+00 -5.64926759e-01 -3.48822746e+00 -1.16984025e+00 1.51987893e+00 1.45050467e-01 6.60445139e-01 -3.33371338e+00 1.43322669e+00 -2.13737271e-02 1.62151507e+00 1.10787332e+00 -2.79882162e+00 2.03521872e+00 -2.52669031e-01 3.77323149e+00 -3.12999694e+00 1.86739472e+00 -3.08538841e+00 -1.31064007e+00 7.07716140e-02 4.50808204e-01 -8.40797222e-02 -2.74393240e+00 -2.04739636e+00 -9.93816303e-01 1.83334060e+00 3.05083171e+00 1.31856399e+00 -3.14004057e+00 1.76400727e+00 -1.08893342e+00 -1.17775493e+00 2.29858957e-01 -1.96188404e+00 3.19940873e+00 -3.96640560e+00 -6.60260567e-02 -8.34458421e-01 1.17044087e-01 7.79960009e-01 1.43591716e+00 1.03345968e-01 -7.15388968e-02 1.25371745e+00 -9.29951523e-02 1.56299732e+00 3.14588965e+00 -1.57601773e+00 9.51559749e-02 1.58232592e+00 -3.12843685e+00 1.56617059e+00 -4.19672321e-03 1.52524718e+00 -3.20882349e+00 1.45897950e+00 -1.05054042e+00 -1.48719789e+00 -6.31156003e-01 -5.92882721e-01 1.09235840e+00 -4.49134299e-01 8.65281227e-01 -1.62535454e+00 -1.08244515e+00 2.85421451e-02 -3.18565605e+00 1.28335478e+00 -2.61684613e+00 5.33552761e-02 2.37344308e+00 -4.33086626e+00 2.10684919e-01 -1.62993403e+00 2.42735199e+00 1.64468841e+00 1.32886588e+00 1.57264287e+00 -3.53568362e+00 -4.70877025e+00 8.82981905e-01 1.53999815e+00 2.42976966e+00 1.66890430e+00 1.22700781e+00 -1.54837742e+00 2.43743284e-01] VQE eigenvalue: -160.39010288890995 VQE result: -46.39010288890995 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cbcdbd0>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cbcd870>}
tnc: |fn-fn-1] = 8.95628e-05 -> convergence 41 485 -1.603901028889099E+02 6.13981864E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 -2.237745804018462E+00 3.01983087E+03 tnc: fscale = 0.00662005
fev:679 E => -41.50416356829052
1 7 -4.150416356829054E+01 1.87725752E+03
fev:5432 E => -87.63184117146842
2 56 -8.763184117146844E+01 1.27615341E+03
fev:6014 E => -102.56764139936334
3 62 -1.025676413993633E+02 1.27504914E+03
fev:6596 E => -107.52202229604167
4 68 -1.075220222960417E+02 1.16519365E+03
fev:6790 E => -109.58423196321692
5 70 -1.095842319632169E+02 1.10187967E+03
fev:7275 E => -111.48590241793808
6 75 -1.114859024179381E+02 1.05959583E+03
fev:12416 E => -119.01946652799926
7 128 -1.190194665279992E+02 9.79527622E+02
fev:12998 E => -119.3471781551206
8 134 -1.193471781551206E+02 9.89495492E+02
fev:13289 E => -119.73094148262513
9 137 -1.197309414826251E+02 9.54293819E+02
fev:13968 E => -127.87451520599276
10 144 -1.278745152059928E+02 6.57786655E+02
fev:14162 E => -128.5787479986152
11 146 -1.285787479986152E+02 6.39361190E+02
fev:14453 E => -129.54781393990285
12 149 -1.295478139399029E+02 6.37055605E+02
fev:15326 E => -133.66497272614393
13 158 -1.336649727261439E+02 5.68042411E+02
fev:16587 E => -133.76230957881253
14 171 -1.337623095788126E+02 5.70723067E+02
fev:16975 E => -133.8214266535234
15 175 -1.338214266535234E+02 5.64497356E+02
fev:17848 E => -135.6683627975328
16 184 -1.356683627975328E+02 4.83839105E+02
fev:18333 E => -135.83366178569466
17 189 -1.358336617856947E+02 4.79944788E+02
fev:19594 E => -135.8926128393699
18 202 -1.358926128393699E+02 4.76628036E+02
fev:21437 E => -138.44835414599896
19 221 -1.384483541459990E+02 4.28562288E+02
fev:22019 E => -140.17880372507068
20 227 -1.401788037250707E+02 4.28769094E+02
fev:27548 E => -140.19457636583945
21 284 -1.401945763658395E+02 4.22270167E+02
fev:28421 E => -141.18643034696498
22 293 -1.411864303469650E+02 4.40082652E+02
fev:28809 E => -144.08568437632243
23 297 -1.440856843763224E+02 3.14925772E+02
fev:29003 E => -144.37444498558688
24 299 -1.443744449855869E+02 3.31661000E+02
fev:30167 E => -144.38233877682575
25 311 -1.443823387768257E+02 3.35850053E+02
fev:30458 E => -144.38987866890506
26 314 -1.443898786689051E+02 3.42505417E+02
fev:31622 E => -144.58964451333145
27 326 -1.445896445133315E+02 3.17073826E+02
fev:32107 E => -145.80708554365788
28 331 -1.458070855436579E+02 3.09616476E+02
fev:32301 E => -146.50997942100057
29 333 -1.465099794210006E+02 3.37720620E+02
fev:33271 E => -146.51457923312321
30 343 -1.465145792331232E+02 3.41623067E+02
fev:34338 E => -146.95259118643435
31 354 -1.469525911864344E+02 3.55302623E+02
fev:34920 E => -147.14473336772136
32 360 -1.471447333677214E+02 3.24815712E+02
fev:35793 E => -147.14725090522438
33 369 -1.471472509052244E+02 3.27754045E+02
fev:36181 E => -147.1484983183845
34 373 -1.471484983183845E+02 3.25678356E+02
fev:39770 E => -147.96654059743486
35 410 -1.479665405974349E+02 2.74779677E+02
fev:40352 E => -148.20933216826091
36 416 -1.482093321682609E+02 2.87256636E+02
fev:40546 E => -148.2338490046397
37 418 -1.482338490046397E+02 2.96138655E+02
fev:44038 E => -148.39630436928152
38 454 -1.483963043692815E+02 2.77200891E+02
fev:45493 E => -148.80048307986
39 469 -1.488004830798600E+02 3.09114795E+02
fev:50440 E => -148.80067445957445
40 520 -1.488006744595745E+02 3.07951153E+02
fev:51119 E => -148.82877375699348
41 527 -1.488287737569935E+02 3.16286506E+02
fev:51410 E => -149.00608386834787
42 530 -1.490060838683479E+02 3.14496062E+02
fev:52671 E => -149.0435456664104
43 543 -1.490435456664104E+02 3.03863229E+02
fev:53641 E => -149.04561385797282
44 553 -1.490456138579728E+02 3.01519228E+02
fev:54320 E => -149.1284964196928
45 560 -1.491284964196928E+02 2.84559471E+02
fev:54514 E => -149.14586988487133
46 562 -1.491458698848713E+02 2.88970226E+02
fev:55387 E => -149.20158373588245
47 571 -1.492015837358824E+02 2.93861210E+02
fev:55581 E => -149.21866282457404
48 573 -1.492186628245740E+02 3.01033521E+02
fev:55775 E => -149.21930217185653
49 575 -1.492193021718566E+02 3.02407980E+02
fev:56357 E => -149.22023702435078
50 581 -1.492202370243508E+02 3.04305928E+02
fev:61789 E => -149.2393311228438
51 637 -1.492393311228439E+02 3.01491066E+02
fev:61983 E => -149.23959017433518
52 639 -1.492395901743351E+02 3.01472310E+02
fev:62662 E => -149.48251165125382
53 646 -1.494825116512538E+02 2.99071585E+02
fev:63535 E => -151.95346809805199
54 655 -1.519534680980520E+02 2.55788499E+02
fev:64408 E => -152.1379290641863
55 664 -1.521379290641864E+02 2.38601358E+02
fev:64602 E => -152.14004619463165
56 666 -1.521400461946317E+02 2.39246550E+02
fev:65184 E => -152.1450500261074
57 672 -1.521450500261074E+02 2.40554333E+02
fev:65572 E => -152.69812997521376
58 676 -1.526981299752138E+02 2.69481296E+02
fev:66057 E => -154.0391512883311
59 681 -1.540391512883311E+02 2.98495604E+02
Classical optimization exited with an error index: 1 fev:71295 E => -154.0391764422952 Finnished. VQE Total time: 605.10 s fev/s: 117.82 VQE solution parameters: [-1.69875414 -6.03843755 -0.86344427 -1.4193935 -3.30165063 -0.1269073 1.5744512 -0.22030017 -0.27602548 1.54502429 1.06347359 -2.26042592 1.8830069 -0.26677942 2.59407474 -0.78478982 3.2872601 -0.43161703 -2.57851503 -2.05433557 2.07021422 0.44276091 -1.42664254 -0.16787317 -1.55804838 -2.38252096 -1.97465469 -3.62261689 0.40334711 -2.68254769 1.38775846 0.39050688 1.43810797 -0.06045688 -1.62628109 3.03672203 -1.5995642 -0.11921851 1.04712841 0.23302313 4.38627832 3.41365893 3.1760138 2.13831034 0.92303207 -0.34834209 1.53960192 -3.20107933 -1.43612756 -3.05934068 -1.72192922 -3.71410735 1.05069614 -2.27106401 1.32030722 0.72544688 1.9947624 -0.62517417 1.95141448 0.03269813 -0.99824457 -3.3181756 2.66579396 0.73062648 -1.24273103 -0.2792486 -1.18016974 -2.95723025 0.29661401 -0.82346605 -1.6893872 0.07391886 -1.6927496 -1.87463427 0.44401863 1.50725981 -1.16205334 2.23260201 -1.57816977 -0.9688771 1.57022719 -2.8423609 3.45354275 -2.67723082 -0.34705437 1.41263819 -1.85422069 1.95163986 2.16922171 -0.23691543 -1.57615861 -2.53962383 -3.14783971 1.67477418 -0.91253862 2.64117113] VQE eigenvalue: -154.03917644229523 VQE result: -40.03917644229523 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 1, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4f910>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d120>}
tnc: |fn-fn-1] = 2.5154e-05 -> convergence 60 735 -1.540391764422952E+02 2.98100604E+02 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 -1.170831026349242E+01 1.83775463E+03 tnc: fscale = 0.00865513
fev:1164 E => -63.10970742113446
1 12 -6.310970742113447E+01 1.16538641E+03
fev:1552 E => -83.74649213076972
2 16 -8.374649213076972E+01 1.66076295E+03
fev:6693 E => -115.73177294208018
3 69 -1.157317729420802E+02 9.38514625E+02
fev:7372 E => -119.11870585576854
4 76 -1.191187058557685E+02 7.77974672E+02
fev:12610 E => -122.32401791892107
5 130 -1.223240179189210E+02 6.28374091E+02
fev:12901 E => -124.11395592995748
6 133 -1.241139559299575E+02 6.37160029E+02
fev:13289 E => -126.0449241216577
7 137 -1.260449241216577E+02 6.99512809E+02
fev:13774 E => -130.62735153514555
8 142 -1.306273515351456E+02 5.63845613E+02
fev:19109 E => -131.4001487011641
9 197 -1.314001487011641E+02 5.58552669E+02
fev:19691 E => -137.16367376164428
10 203 -1.371636737616442E+02 3.83197903E+02
fev:20273 E => -138.85851094427804
11 209 -1.388585109442780E+02 3.54446580E+02
fev:20952 E => -140.7033655636541
12 216 -1.407033655636541E+02 2.58841554E+02
fev:21534 E => -141.5264918528519
13 222 -1.415264918528519E+02 3.23519154E+02
fev:21825 E => -141.69325971612307
14 225 -1.416932597161231E+02 2.73852270E+02
fev:22795 E => -142.19442704599746
15 235 -1.421944270459974E+02 3.61924953E+02
fev:23474 E => -146.89242057577377
16 242 -1.468924205757738E+02 2.19989487E+02
fev:23668 E => -148.7950888240175
17 244 -1.487950888240175E+02 2.63510954E+02
fev:24153 E => -148.84357819604648
18 249 -1.488435781960465E+02 2.84184440E+02
fev:24735 E => -149.44959007015538
19 255 -1.494495900701554E+02 2.18270693E+02
fev:25026 E => -152.48494754745653
20 258 -1.524849475474566E+02 1.82670828E+02
fev:25608 E => -153.16702345805535
21 264 -1.531670234580554E+02 2.16318983E+02
fev:26190 E => -153.54539221927658
22 270 -1.535453922192765E+02 2.45220678E+02
fev:26578 E => -154.3650292883845
23 274 -1.543650292883846E+02 1.41325491E+02
fev:27160 E => -154.48644104304503
24 280 -1.544864410430449E+02 1.60910315E+02
fev:27451 E => -154.56150518602283
25 283 -1.545615051860228E+02 1.50017826E+02
fev:28033 E => -154.788707962161
26 289 -1.547887079621611E+02 1.57112177E+02
fev:28227 E => -154.84825593650532
27 291 -1.548482559365054E+02 1.72228594E+02
fev:28712 E => -154.87124455833558
28 296 -1.548712445583355E+02 1.84280540E+02
fev:29585 E => -155.25925396470956
29 305 -1.552592539647096E+02 1.68132649E+02
fev:34920 E => -155.27739411919973
30 360 -1.552773941191997E+02 1.76200481E+02
fev:35599 E => -155.36711503884507
31 367 -1.553671150388450E+02 1.95111208E+02
fev:36472 E => -156.05061883653997
32 376 -1.560506188365400E+02 1.25517755E+02
fev:37539 E => -158.64063367144192
33 387 -1.586406336714419E+02 1.30139695E+02
fev:37733 E => -159.46235424697295
34 389 -1.594623542469730E+02 1.01071158E+02
fev:38897 E => -159.46924698119628
35 401 -1.594692469811963E+02 1.01367588E+02
fev:40449 E => -159.56871340055235
36 417 -1.595687134005524E+02 9.99225847E+01
fev:41225 E => -160.99740608576136
37 425 -1.609974060857613E+02 7.21637308E+01
fev:42195 E => -161.02317343901976
38 435 -1.610231734390198E+02 7.74867173E+01
fev:45978 E => -162.06324261438223
39 474 -1.620632426143821E+02 6.73169701E+01
fev:50149 E => -162.21444695960884
40 517 -1.622144469596089E+02 5.33901207E+01
fev:51119 E => -162.21456463142553
41 527 -1.622145646314255E+02 5.32298573E+01
fev:51798 E => -162.2148685400776
42 534 -1.622148685400776E+02 5.29234668E+01
fev:53059 E => -162.21686522645825
43 547 -1.622168652264582E+02 5.34606065E+01
fev:54126 E => -162.66332773945155
44 558 -1.626633277394515E+02 5.37304259E+01
fev:54805 E => -163.10869785090435
45 565 -1.631086978509043E+02 6.24017923E+01
fev:56066 E => -163.11150190180035
46 578 -1.631115019018004E+02 6.24196520E+01
fev:56260 E => -163.1116436962086
47 580 -1.631116436962086E+02 6.24533702E+01
fev:56842 E => -163.11180743451266
48 586 -1.631118074345127E+02 6.25138656E+01
fev:57521 E => -163.11636182796857
49 593 -1.631163618279686E+02 6.22148442E+01
fev:58200 E => -163.19416844093104
50 600 -1.631941684409310E+02 6.13728489E+01
fev:58782 E => -163.9173947490269
51 606 -1.639173947490270E+02 5.02902727E+01
fev:60528 E => -163.92383808554848
52 624 -1.639238380855485E+02 4.96321730E+01
fev:61304 E => -163.94185615355465
53 632 -1.639418561535547E+02 4.95245617E+01
fev:62177 E => -164.04960261197633
54 641 -1.640496026119763E+02 4.96024306E+01
fev:62662 E => -164.1372686717373
55 646 -1.641372686717374E+02 5.09579758E+01
fev:62856 E => -164.13745189241988
56 648 -1.641374518924199E+02 5.10955919E+01
Classical optimization exited with an error index: 1 fev:63535 E => -164.13753622769087 Finnished. VQE Total time: 540.58 s fev/s: 117.53 VQE solution parameters: [-2.26323221e-01 -2.57416486e+00 -4.09336842e-01 1.45191778e+00 1.03106364e+00 -2.31992942e+00 -1.63976493e+00 1.51244886e-01 -1.55204024e+00 3.13312053e+00 3.29404003e+00 -1.14535037e+00 -1.57078692e+00 -3.46200521e-02 -1.57321073e+00 7.24400819e-02 -1.65427064e+00 -1.95127044e-02 -1.00603215e+00 1.24217194e+00 1.54459475e+00 -1.65300602e+00 -1.59587166e+00 -3.16123152e+00 1.18301812e+00 -1.60635451e+00 2.36434785e+00 -7.02098358e-01 -1.58079625e+00 -1.06954108e-02 1.54466480e+00 1.56148635e+00 -1.55277607e+00 3.24383300e+00 -1.61366106e+00 2.72422971e-01 -2.44617560e+00 6.22428902e-01 -1.89777778e+00 7.04304593e-01 1.67247384e+00 9.06905532e-01 -1.49658375e+00 2.38295015e+00 -1.51625518e+00 -3.37208666e-01 1.42853015e+00 -1.71126298e+00 1.14215848e+00 -9.18996426e-01 -1.55521997e+00 3.16116098e+00 7.63570006e-01 -1.51859619e+00 1.37028798e+00 -1.97031078e+00 -1.68075730e+00 -7.86427914e-04 1.89706902e+00 6.02854028e-01 -2.17203720e+00 1.60129523e+00 1.56549758e+00 3.14945031e+00 4.23607803e-01 1.40076814e+00 -1.66972364e+00 1.58231150e+00 6.44249855e-01 1.68761268e+00 3.29461511e-02 5.54688204e-01 1.54984602e+00 2.97219283e+00 -3.14599956e+00 2.27870481e+00 5.81308734e-02 -9.22996424e-01 -5.48672903e-02 -2.87100521e+00 -1.39627811e+00 1.14991143e+00 1.51775989e+00 -2.61320579e-02 3.09899302e+00 -7.17386210e-02 -1.54183616e+00 2.54779014e+00 -2.05655168e+00 6.87025522e-01 1.89763326e+00 2.12842218e+00 1.56669829e+00 -7.70522291e-01 -1.40718194e+00 -2.44721912e+00] VQE eigenvalue: -164.13753622769087 VQE result: -50.13753622769087 Solution: 8 x00 = 1, x01 = 0, x02 = 1, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 1, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:TNC and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4d3f0>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4eef0>}
tnc: |fn-fn-1] = 8.43353e-05 -> convergence 57 655 -1.641375362276909E+02 5.12320312E+01 tnc: Converged (|f_n-f_(n-1)| ~= 0) NIT NF F GTG 0 1 2.992470922794691E+01 4.04834217E+03 tnc: fscale = 0.00559391
fev:873 E => -54.87144073904142
1 9 -5.487144073904142E+01 1.37468838E+03
fev:1164 E => -94.88292747142322
2 12 -9.488292747142322E+01 1.26557435E+03
fev:6208 E => -111.41824296831004
3 64 -1.114182429683100E+02 7.96650921E+02
fev:6596 E => -116.81319146309845
4 68 -1.168131914630984E+02 8.40251878E+02
fev:11834 E => -128.67793529484777
5 122 -1.286779352948478E+02 6.84386348E+02
fev:17169 E => -134.6315035261871
6 177 -1.346315035261871E+02 4.78521767E+02
fev:17654 E => -134.84123748979985
7 182 -1.348412374897999E+02 4.72150049E+02
fev:18236 E => -135.406837726166
8 188 -1.354068377261660E+02 4.78723035E+02
fev:23474 E => -138.85775940601465
9 242 -1.388577594060147E+02 5.36173529E+02
fev:23959 E => -145.96533636197262
10 247 -1.459653363619726E+02 4.28919357E+02
fev:28421 E => -145.96685225996177
11 293 -1.459668522599618E+02 4.29632499E+02
fev:28712 E => -147.57020739229682
12 296 -1.475702073922968E+02 3.51627933E+02
fev:30070 E => -147.62771137145566
13 310 -1.476277113714557E+02 3.49788904E+02
fev:30943 E => -147.66949343097218
14 319 -1.476694934309722E+02 3.51574125E+02
fev:31622 E => -148.3706835250802
15 326 -1.483706835250802E+02 3.44909275E+02
fev:31913 E => -151.94089597745042
16 329 -1.519408959774504E+02 2.59253985E+02
fev:32107 E => -153.23859136815634
17 331 -1.532385913681563E+02 2.37962938E+02
fev:34532 E => -153.26231380130858
18 356 -1.532623138013085E+02 2.35095179E+02
fev:35114 E => -153.26501400001257
19 362 -1.532650140000126E+02 2.34243689E+02
fev:35987 E => -154.68438666524722
20 371 -1.546843866652473E+02 2.06262849E+02
fev:36181 E => -155.03986740451398
21 373 -1.550398674045140E+02 2.08490318E+02
fev:36375 E => -155.0553146240806
22 375 -1.550553146240806E+02 2.09831628E+02
fev:36666 E => -155.07048768620282
23 378 -1.550704876862028E+02 2.12223123E+02
fev:40449 E => -155.66179954957957
24 417 -1.556617995495796E+02 2.09315887E+02
fev:41128 E => -156.43424893090375
25 424 -1.564342489309037E+02 1.74165194E+02
fev:41322 E => -156.4509152908065
26 426 -1.564509152908066E+02 1.72191930E+02
fev:45396 E => -156.5672655682928
27 468 -1.565672655682929E+02 1.65078723E+02
fev:50828 E => -156.68484612818975
28 524 -1.566848461281898E+02 1.60138375E+02
fev:51313 E => -157.04523761263235
29 529 -1.570452376126323E+02 1.52360012E+02
fev:52477 E => -157.082139787293
30 541 -1.570821397872930E+02 1.50790419E+02
fev:52962 E => -157.0824160548902
31 546 -1.570824160548901E+02 1.50795189E+02
fev:53350 E => -157.08255780519193
32 550 -1.570825578051919E+02 1.50802775E+02
fev:54029 E => -157.08692418225368
33 557 -1.570869241822536E+02 1.50837663E+02
fev:54708 E => -157.39632239721476
34 564 -1.573963223972148E+02 1.48166674E+02
fev:55872 E => -157.3965122754342
35 576 -1.573965122754342E+02 1.47865222E+02
fev:57133 E => -157.7236878460143
36 589 -1.577236878460143E+02 1.56460521E+02
fev:58976 E => -157.74574871964919
37 608 -1.577457487196491E+02 1.61851291E+02
fev:60043 E => -158.23161649578256
38 619 -1.582316164957826E+02 1.74537360E+02
fev:60431 E => -159.1183300601785
39 623 -1.591183300601784E+02 1.53909203E+02
fev:61013 E => -159.18451792744432
40 629 -1.591845179274442E+02 1.40606495E+02
fev:61983 E => -159.18866862288974
41 639 -1.591886686228897E+02 1.42675485E+02
fev:62274 E => -159.18880841166
42 642 -1.591888084116600E+02 1.42372967E+02
Classical optimization exited with an error index: 1 fev:62856 E => -159.18887755368365 Finnished. VQE Total time: 582.10 s fev/s: 107.98 VQE solution parameters: [ 1.52399457 2.67515028 -0.25226767 -0.56763691 1.35827632 -0.00742714 -1.77464964 2.08863422 -1.5228086 -0.20826186 0.03115517 0.68587841 -1.69628573 -3.08580316 0.18578437 -2.85653868 -3.30212353 -1.73080753 0.11898664 -2.73361599 -1.7456688 3.15925018 0.01741819 0.08647075 -1.57939809 -0.00672287 -0.93317414 -1.72593338 -1.11316007 4.16748613 1.61185655 -0.13469985 -0.2819859 -1.79551844 -0.10538902 1.98036157 0.27894403 -0.09430149 -2.93844113 2.89762411 -0.31060558 -1.71085454 -3.66473588 -1.67492611 1.533132 0.06111689 1.59926886 -3.13298821 -1.53182649 3.08626526 1.46074487 0.13475202 -3.35943203 2.79069888 -2.9353798 0.66457963 1.52617046 -2.0900488 -1.54583343 3.07193143 1.28517422 2.11967713 -0.95791333 -2.55226224 1.6109395 -2.21187514 2.93209825 1.70503288 -4.6643733 2.25779349 -4.09533398 -2.02667221 -1.7044175 -2.1495199 -3.12009966 -0.97366607 1.53866589 -0.4687293 -1.68689641 -0.03092106 -1.59042447 -1.28333481 3.18329321 0.42475111 4.79981493 2.20681899 0.21236574 -1.47728032 1.56931894 -0.26635192 1.27707311 -0.58720437 0.14860847 -3.31403997 1.99075576 -2.92510678] VQE eigenvalue: -159.1888775536836 VQE result: -45.1888775536836 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 0, x12 = 0, x13 = 0, x20 = 0, x21 = 1, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 1, x33 = 1, {'method': 'TNC', 'tol': 0.001, 'options': {'maxfun': 15000, 'ftol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4eef0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998, -95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874, -95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568, -95.95319254022507, -95.97353711991252, -95.94687354505373, -95.87459624709459, -79.90218124648075, -69.99652045764691, -85.99263923618861, -79.98331034194987, -95.8990149557406, -79.99414466987284, -74.33845122673526, -93.80198517706091, -49.05059776278679, -34.06108509207752, -0.7835182515148205, -56.33127363103466, -46.39010288890995, -40.03917644229523, -50.13753622769087, -45.1888775536836] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0], [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1]] VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4de10>, [2.1640663169737717, 1.6207753144767914, -0.4990634762961359, -1.51477073236636, 0.07084116364578463, -0.5973164307859111, 1.783159124821581, -1.2358225896100896, -0.14704567381316824, 0.5239048051865205, 2.5642488839299995, 0.02944838360869584, -1.3707532506504077, 1.6072652170754367, 0.7437343407360331, -1.5676148901859928, 2.5745116551714924, 3.033430609559484, 1.949152379247634, 2.5268831908499, -1.1928780029851, 1.444075463791438, 2.5059748709011576, 1.15600513776823, -0.17503248096543222, -2.508868302639403, -0.41361055627538645, 0.6967234022997073, 2.5950249814071276, 2.931774274213666, -0.14445183417274388, 2.295309970741605, -1.5048711963017696, 1.9165463609691384, 0.30598675032964895, -3.053366049431408, 1.3804452575318233, -0.6357104329289505, 2.0410611875288662, 1.0565377233351771, -3.134412108064616, -0.04035145506581772, 2.3097163578546764, -1.6090554156712766, -1.0982733797446915, 2.3277394023178166, -1.9410827115764353, 0.4241824935446177, -1.6423245568556286, 2.937642031138095, 1.9049327868177839, -0.3269168242822813, -2.6361366684364675, -1.1306302640160828, 0.04989252841483571, 2.7195751248328524, -2.4563619984028273, 0.3221216073757116, 1.2978636155059418, 0.2980800370179617, 1.9758535750269743, 0.2531093674361369, 2.9143835369661293, 0.6483344215190607, 0.5505142502853126, -0.345644141839319, 0.6049881939734081, -0.7231874284977877, 0.4753293406740622, -1.3173985898520235, -1.951611840709841, -1.9683364252379139, 0.7085747867943502, 0.9843199711313675, -0.1474601261807389, -2.577209547098847, 1.6185731775713519, 2.3673180581342628, 2.660181378732436, 2.1517410423278367, 2.5017955058296595, 2.658305369603826, 0.25509685190620957, -0.6830070599981926, 1.2898336417730771, -1.40973239240408, 1.958020922592052, 2.195885081524458, 2.482103035898681, 0.5642374769303209, 2.8259560431775492, 0.5007385205723103, -0.3106211620477297, 1.006851408503624, 3.1180799647990556, 2.619718934565018]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d1b0>}
tnc: |fn-fn-1] = 6.9142e-05 -> convergence 43 648 -1.591888775536836E+02 1.42114098E+02 tnc: Converged (|f_n-f_(n-1)| ~= 0)
Classical optimization exited with an error index: 2 fev:110713 E => -193.9995977859938 Finnished. VQE Total time: 1016.14 s fev/s: 108.95 VQE solution parameters: [ 4.71239051e+00 3.14154913e+00 -4.44035992e-01 -1.13691137e+00 4.34418304e-02 -9.81172134e-02 3.27563551e+00 -1.07007836e-03 -2.14194833e-01 2.16940805e-02 1.55545267e+00 2.62028140e-02 -1.57879302e+00 3.12363063e+00 4.58638901e-01 -2.32045415e+00 3.14190018e+00 1.53059853e+00 3.03303005e+00 2.61322771e+00 -1.57084073e+00 3.14170005e+00 3.14171332e+00 1.38214349e+00 -1.57115388e+00 -3.14169082e+00 4.10175205e-01 4.32500832e-01 3.14122637e+00 2.17207005e+00 -5.40516389e-01 5.36723633e-06 -1.57078637e+00 3.54918647e+00 1.57058952e+00 -3.14192905e+00 1.57076458e+00 -1.72265098e-04 1.57081637e+00 -1.19224323e-04 -4.71249767e+00 8.07633808e-03 1.57081445e+00 -1.03838135e+00 -1.57081981e+00 2.79473680e+00 -1.57073808e+00 6.21417568e-05 -1.57066733e+00 3.14152246e+00 1.57076110e+00 5.46815693e-02 -3.12560291e+00 -2.59424748e-01 -1.61165399e-02 2.59430200e-01 -1.57079617e+00 1.80014334e-01 1.57075781e+00 8.03357600e-07 1.57076188e+00 -4.82046067e-04 1.57059482e+00 9.06818776e-05 -1.24155705e-04 -2.66566786e-01 1.61406164e+00 -1.39816939e+00 1.70496630e+00 -1.45856264e+00 -1.35660829e+00 -2.48282410e+00 -3.02988903e-02 9.73093185e-01 -2.07499772e-02 -6.71109893e+00 1.26421986e+00 1.62923066e+00 4.71255304e+00 6.95789376e-01 1.47715108e+00 1.85876719e+00 7.83190068e-04 -1.03826570e+00 1.57067904e+00 -1.69084532e+00 3.14141499e+00 4.92361673e+00 1.20019649e+00 1.36630333e-01 1.57048534e+00 -3.51727309e-01 1.02936246e+00 1.77610943e+00 1.38909792e+00 3.58884344e+00] VQE eigenvalue: -193.99959834377123 VQE result: -79.99959834377123 Solution: 0 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options'])
/usr/local/lib/python3.10/dist-packages/basiq/algorithms/vqe/vqe_algorithm.py:261: RuntimeWarning: Maximum number of iterations has been exceeded. result = optimizer(*args, **optimizer_kwargs)
Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4feb0>, [1.8430158588342405, -2.624027904444141, 0.708637148489895, -0.08517359101442512, 0.8177398570418659, 2.1681863532964165, -1.614554803929487, 1.4544896708435058, -2.4056161835351673, -1.7563982475289295, 1.8509193995971902, -1.0522064067067753, 1.9849405264858957, -2.5094569607762445, -2.221995146474999, 1.2420012621103744, -2.8573786229926132, 0.4641139970532806, 2.576206599265335, 0.2148721717111748, 1.1346749843514763, -2.973851745619435, 0.8482294504262424, 0.6681439840220333, 0.4772264471087513, -0.6835514409022028, -0.8159348188754145, 3.0191751592020646, -2.912934737570979, -3.0056464527700597, 2.8967449661517195, -1.9793796691609251, -2.3631363768476046, -1.8185014206328594, 1.8896465576977475, 2.7455581972862557, -2.998445508888772, -0.4673506621169503, -2.503847966542505, -1.508467820999734, -1.7540814206599336, 0.9231615241160833, -0.9406307444502566, -2.008621864077003, 0.022848836104245596, -2.8941689398195254, -2.507485793768951, 3.067671912901859, -1.8890032800259708, -0.8887232525773872, 1.455175074842864, 2.12576850345181, 2.6294003432472834, -2.077066457883495, 1.0847326524654068, 2.931413212681682, -2.7768478162712293, 1.1071084622086804, 2.1703667318844744, -0.9907795250215257, -1.5664776466976356, 0.6081582613084415, -0.3624516158924038, -2.043169437475788, -0.1782827749643232, -0.5660810942606114, 0.43424814951788715, 0.05403621084936994, -1.184719716125455, -0.8975424491041863, 2.121587729600173, -1.5649362208879218, 0.38076240471232925, -3.063452957846044, 1.5178565787377378, -1.0309666940837543, -2.854473116611091, -1.3767516831389566, -1.632808803328204, 2.8470956102580116, -0.9284941806624771, -1.3328023687025645, -0.884664968683738, 2.807992180298476, 0.84036254011933, 0.760748257430861, 1.3547763337577186, -0.7036084617418137, -0.5377276386152707, 0.9477108240128915, -3.1320156852147667, -1.9332761696107994, -1.04048486412315, -1.6372978102450855, 0.8633058983908937, -0.7624766615438232]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e8c0>} Optimization terminated successfully. Current function value: -209.999993 Iterations: 54077 Function evaluations: 62677 fev:62677 E => -209.99999301125004 Finnished. VQE Total time: 552.25 s fev/s: 113.49 VQE solution parameters: [ 1.57072245e+00 -3.14155205e+00 4.81769382e-01 -9.76701050e-02 1.57076714e+00 -5.27375039e-05 -1.57099091e+00 3.14154341e+00 -2.46214606e+00 -1.58642909e+00 1.28228565e+00 -4.52389441e-01 1.57072024e+00 -3.14161269e+00 -1.57088460e+00 1.57076016e+00 -3.14155886e+00 8.99883885e-01 3.14160826e+00 2.46197005e-01 1.57072122e+00 -4.71240912e+00 1.57071490e+00 1.85129757e-05 3.46047824e-01 -7.08142635e-01 -1.57078707e+00 3.14170693e+00 -2.58728599e+00 -4.75593295e+00 3.14162623e+00 -1.94241417e+00 -1.57081571e+00 -1.41871521e+00 1.57065634e+00 4.61135709e+00 -1.57077156e+00 -3.78357923e-01 -1.57072693e+00 -6.78607882e-01 -1.57080298e+00 -7.43487555e-04 -1.57085716e+00 -2.16707018e+00 3.75829724e-02 -1.57072868e+00 -1.57084402e+00 3.14155277e+00 -1.57073330e+00 -3.92753717e-05 1.57086296e+00 -3.92702910e-05 3.10396942e+00 -1.57069569e+00 1.57121885e+00 1.90068357e+00 -1.57029411e+00 1.67030022e+00 1.57081223e+00 -5.53836642e-01 -1.57083715e+00 1.00278650e-05 -1.57053810e+00 -3.14147168e+00 1.27643032e-04 -5.81987115e-01 -9.64726320e-05 2.77544894e-02 3.01170172e-04 -1.12245977e+00 1.56094368e+00 -2.15375326e+00 5.31077021e-01 -4.47710880e+00 -1.27064877e-04 -8.95548475e-01 -1.57087236e+00 -1.24173867e+00 -1.57067413e+00 3.93388537e+00 -1.57089247e+00 -1.03031611e+00 -1.57068843e+00 6.25543614e+00 7.19820932e-05 6.10810861e-01 1.31025742e+00 -8.77468432e-01 1.21556577e-04 1.18819101e+00 -1.54771603e+00 -2.40787715e+00 -1.57075411e+00 -1.80063735e+00 2.05016638e+00 -4.70901292e-01] VQE eigenvalue: -209.99999308588454 VQE result: -95.99999308588454 Solution: 1 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dd80>, [2.358854738782756, 0.4282080065263294, -0.5378004707458839, -0.6140740776394855, 1.2681329276536504, -0.5137977188702103, 1.0191068264852214, -2.847667218111563, -0.343362318628186, -1.5128218569608358, -2.1508187004913752, 0.17324708634210673, -0.08001258825882118, 0.3858185264090226, 1.6052581358479499, 2.4119587289667344, -0.03403808590214652, -1.18087286471907, -0.2080222203865838, 1.9417923902113472, 2.3562971039092293, 1.962960912771475, -1.9603456850788816, 3.1379506646360795, 0.8362213408694164, -2.6171537102920297, 1.4171998122048794, 3.0587895716442794, -0.6169031000863474, 1.121642858047422, -1.1549931105345512, -1.799977634184408, 1.3654878641472994, -3.126779637584424, 2.0277812568163345, 0.1781030253231024, -2.5271955139156637, -2.3944974489118507, 0.9378623245774298, 2.347736216302099, -1.382409194454554, 3.0065995907969105, -2.51213882000157, 2.223858729872913, -0.6490770607699465, -2.6304843261452246, -1.415514668939052, -0.2954467782689947, 1.8368360134240724, 2.270491237137313, -2.3032865877485795, 0.13110198155863229, 0.9473990265113894, -0.9609942514451948, 2.3364893888081983, -1.392292193247773, -3.0248867116645686, -2.8860977698915713, 1.137236246609925, 0.36665990363461454, 2.805458287979076, 2.7547922245918937, 2.5751708960019934, -2.8776703954976397, 1.5653602618362523, 1.2649611358826327, 0.9761673854202844, 1.3342824821571977, 2.5303025014234564, 0.8805331274713044, -0.8014249168126484, 0.23831357666296693, -1.8356696350956927, 0.5474256909811315, -3.0856906383822498, -2.192686066523957, -1.0467259686301063, 1.8197559767814155, 1.3728723627853583, -1.0162677126523874, 0.7573632711297789, -2.8827068866399164, -2.1120264805745848, 3.027955404734432, -1.3224166480497506, -0.661041466685472, 0.30463581985335386, -1.2980620930094366, -0.13782374849842816, -1.6354749108300304, -2.8383889870820465, -2.0132152023292123, 0.1448288771451418, -2.696348021423819, -0.6084061963378469, -1.0774361553162803]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4f010>} Classical optimization exited with an error index: 2 fev:110188 E => -193.9991560470817 Finnished. VQE Total time: 970.23 s fev/s: 113.57 VQE solution parameters: [ 1.57072809e+00 -8.36805841e-05 -2.33405805e-01 -1.06010350e+00 1.56717588e+00 6.17720579e-03 1.57076507e+00 -3.14159045e+00 -3.49989669e-01 -1.21836663e+00 -1.57084076e+00 -9.26540997e-05 -9.34307869e-02 4.01730629e-01 1.62394598e+00 3.14111478e+00 -5.56089929e-02 -1.70787205e+00 -1.35511025e-01 3.13436805e+00 1.61224666e+00 3.14165151e+00 -3.29325559e+00 6.86832145e-01 1.51954817e+00 -3.07776835e+00 1.60984506e+00 3.09195930e+00 -7.67816035e-02 1.19180122e+00 -1.46473530e+00 -3.14139271e+00 1.57079830e+00 -3.44462738e+00 1.57078385e+00 8.89047918e-02 -1.57084033e+00 -4.16410924e+00 1.57094252e+00 1.29687980e+00 -1.57078484e+00 4.10826093e+00 -1.58547346e+00 -1.62914050e-03 -1.58532442e+00 -3.10326868e+00 -1.57060470e+00 -5.45217918e-02 1.57079222e+00 -5.61186278e-05 -1.57075675e+00 1.12341424e-03 1.56942244e+00 -9.52483703e-03 1.57231513e+00 -3.22877464e+00 -4.71233792e+00 -4.04567768e+00 1.57610184e+00 2.24737000e-02 1.56535513e+00 3.23522851e+00 1.57076089e+00 -3.13218647e+00 1.05145708e-05 1.43110793e+00 -7.43137559e-03 1.46700843e+00 3.14187256e+00 9.19757737e-01 -1.45213039e+00 4.14262018e-01 1.17944705e-04 5.19147615e-01 -1.65698496e+00 -2.07807689e+00 -5.35130992e-02 1.96368029e+00 1.57835001e+00 -1.19011571e+00 1.43505490e+00 -2.80695900e+00 -3.10007161e+00 3.94933745e+00 -1.68765630e+00 -8.08309097e-01 8.30108006e-02 -4.77794984e-01 -6.34260251e-02 -1.46619215e+00 -4.68431545e+00 -2.38316114e+00 1.06301771e-01 -3.46427360e+00 -1.68435033e+00 -1.22725009e+00] VQE eigenvalue: -193.99916418508184 VQE result: -79.99916418508184 Solution: 2 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 1, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4db40>, [-0.5358199335305485, -2.517041908839705, 2.5676711414537943, -0.16333359402914693, 2.141613235542846, 2.992237931146658, -0.9823660095304572, -0.1314032755862229, 1.2540942007397975, -0.461592175704864, -1.2446794295686048, 1.4749839788706467, 2.478086891632702, 2.6369827809198716, 0.7963437662987758, -0.7818082885406215, 2.981751695928696, 0.8725994606418572, -2.727941176618146, -2.6095980609290845, 1.5699768221387407, -2.7573371893366043, -3.0922633322458832, -0.6672243171044694, 0.11940394895781914, -0.32330578871015714, -0.07151016080145256, 0.533371445109688, 1.1265912568521133, -0.4835660457503983, -0.827297858977269, 3.0690787770082357, -1.502205711673674, 1.7410716194250604, -0.4321510474748069, -0.8889426570230454, -2.7403613270393046, 2.284433880838458, 1.2692295057735086, 2.532190956257203, -0.30403207323063297, 1.1116272192340908, -2.3944572882420925, -0.6411764310629389, -1.8395157630377474, -2.877061580455905, 2.814624180398023, -1.7850883297454454, -2.222020273588367, -1.8977101846448279, -0.7663477697659613, 0.2914848977598363, -2.1907307731296224, 3.0705291302425284, 3.034710711224384, -2.2091552802790364, -0.5912044891858756, 1.1305302846051832, 2.372886292843811, -0.02886542509809864, 2.6203815266926034, -1.1155147409790676, -0.009796167677616374, -0.008503714108393456, 1.0685697095634508, -1.8724438299630917, 0.6897090865308488, -1.7670007457164878, -1.0039253688571388, 2.9063908055158425, 2.50704144200298, 1.998796736926443, -2.918738991699235, -2.209376037632955, -1.5275559979794087, 1.78547120603774, 2.1509437308504173, 0.5211787873803431, 1.3705615894749883, 1.9292858519498415, -2.724645936455976, -2.609764139886656, 2.317837616839711, -2.893935693571465, -1.7273063656261844, -2.886294100767339, -3.0455532867138224, 2.1611310274781097, -1.0644069826477565, -2.131947227937265, -2.2065322187845617, 0.9807025703261694, 2.9442897756693647, 0.03141399512041243, 2.5201257912072332, 0.015259337254924343]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d360>} Optimization terminated successfully. Current function value: -209.997130 Iterations: 67187 Function evaluations: 77088 fev:77088 E => -209.997129900472 Finnished. VQE Total time: 680.55 s fev/s: 113.27 VQE solution parameters: [-1.57078728e+00 -3.14152472e+00 1.57077132e+00 6.68900680e-04 1.46806930e+00 1.69215720e+00 -1.22158383e-01 -1.26928113e-01 1.57082097e+00 1.44055235e-05 -1.57078953e+00 1.57073230e+00 1.57086185e+00 1.57069570e+00 1.57076587e+00 -3.28090769e-04 3.14138602e+00 2.82957684e-01 -4.71245478e+00 -3.14157848e+00 3.02939040e-01 -6.88059768e-01 -5.48178139e+00 -4.02034743e-03 6.31353896e-02 -1.51220967e-01 -8.61581835e-02 6.57356630e-01 1.57079664e+00 -6.19686887e-05 2.16928713e-04 3.91333473e+00 -4.71226828e+00 1.60717061e+00 -1.57095082e+00 -1.67413970e+00 -4.71239943e+00 3.14146509e+00 1.57077910e+00 3.12549594e+00 -4.68714434e-01 1.57082234e+00 -1.57071739e+00 -4.33621629e-04 -4.68493694e-01 -1.57056386e+00 2.05912606e+00 -1.63710173e+00 -1.08233611e+00 -1.50469828e+00 -1.57124012e+00 1.95034335e-01 -1.57041002e+00 3.14061055e+00 1.57077701e+00 -3.13456509e+00 -1.57058497e+00 -4.73446634e-04 4.71243069e+00 -3.40576836e-02 3.13383822e+00 -8.11668277e-03 -7.74469081e-03 -8.10195838e-03 1.06150993e-04 -2.39180369e+00 1.45016347e+00 -1.52259085e+00 -1.69188104e+00 1.29995248e+00 3.14151079e+00 2.41403450e+00 -4.71248166e+00 -1.48562732e+00 -1.57090416e+00 1.80291026e+00 3.14200713e+00 4.72178775e-01 1.57078931e+00 7.25299457e-01 -3.14156674e+00 -2.30822364e+00 1.33830968e+00 -2.66034631e+00 -2.37187343e+00 -1.98455528e+00 -1.63312597e+00 1.73472466e+00 -1.50257780e+00 -1.23440135e+00 -3.14172966e+00 4.56148883e-01 1.57077920e+00 2.16799265e-02 3.14199822e+00 1.62421991e-02] VQE eigenvalue: -209.99712996679304 VQE result: -95.99712996679304 Solution: 3 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4dab0>, [0.46415446517985703, 1.1219969252620245, 1.917062600160448, 1.6200966005341302, 3.0821069906847374, 1.551729304490003, 2.5495954789074338, -1.8465978010166042, 0.22252720299194095, 0.6196116925537751, 2.04641219954003, -0.11175547921131201, 1.828659582009025, -0.7001423121715171, 0.5427946748193002, 2.207387346293223, 1.8727628895073662, 0.9863630298651298, -3.1400803127193755, -1.9982481953460862, 0.04308874558277509, -1.542777099765269, -2.7292847352938368, 2.2612142301710767, 2.783118216173829, -1.2390134922614797, -0.5775933240229998, 1.948023277154971, -2.7504093346068874, 0.885834016987121, -2.341612392472345, -1.3377634138692165, 2.073078474464345, -2.7927059347047862, -2.915813719350591, -0.5160628605564686, -0.05132759778010332, 2.2828394522337803, 1.3646371399208483, 1.0904079083445826, -2.190483190955106, 3.0580635119680917, -0.5583226130853594, 0.702277052496723, -0.7119916746873236, -2.846076128007023, -0.1829084939895731, -2.1905210063369824, -2.9376061374110365, 0.7376486171291519, 0.8166022914116695, -2.4800183247574847, 0.3087793899269706, -0.9634135162958684, -0.7325309825142936, 1.736797446121888, -0.060823259948420194, 2.3956316279293564, 0.6919027506587763, -0.2061612685380716, 0.8313448359501336, -1.0187218632451258, -2.3604432270434343, 1.146867418293958, 0.766783867191565, 1.8131167387446236, -2.342942467313665, 2.587310894213071, 1.8808163014388803, 2.61938083726561, 2.3407046902612825, 1.1372970442554502, 1.9493635787247996, 0.1194264460917629, 1.7937812286221293, -1.9532697263654486, 1.7725752080122499, -0.3482166175112753, 1.612367271239549, -0.27978875379384816, 1.8193511470805737, -2.6682200786955312, -2.861105572527931, 2.7287219230181927, -0.08692723570185734, 2.52000592540395, 2.79465559310498, 1.0462204265907769, 0.45111276281264745, -1.7845541607161934, -2.554264245919568, 2.006813039403095, 2.442726943187134, 1.7554950243271037, 1.24722756877875, -0.5019566616856617]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4ef80>} Classical optimization exited with an error index: 2 fev:111473 E => -199.99274129770487 Finnished. VQE Total time: 1028.20 s fev/s: 108.42 VQE solution parameters: [ 1.56966234e+00 -4.48280255e-04 1.57096900e+00 -7.03597476e-05 3.14158320e+00 1.78658351e+00 1.57051767e+00 -3.14163374e+00 2.39332175e-02 7.36853185e-01 1.59031451e+00 -2.25115664e-02 1.57087853e+00 -2.30035596e-04 -1.97113910e-04 1.86294193e+00 1.57080403e+00 7.14221636e-05 -3.94121735e+00 -2.79133751e+00 3.09463670e-02 -1.34314841e+00 -1.57088265e+00 3.14165760e+00 3.14155976e+00 -3.34647936e-01 -1.57091970e+00 3.14164415e+00 -1.54748867e+00 -9.16513704e-03 -3.22786758e+00 -1.89358256e-01 1.57083579e+00 -1.78685226e+00 -3.23997821e+00 -9.43967519e-01 -9.86789146e-02 9.43916842e-01 1.64021481e+00 1.31073737e-01 -1.64042906e+00 3.02641960e+00 -1.57145496e+00 8.31007395e-01 -2.67101421e-01 -7.56634125e-01 -2.67141992e-01 -2.38457425e+00 -1.57068718e+00 3.38796558e-01 1.56975760e+00 -3.14148564e+00 1.57256533e+00 3.02258206e-02 5.17215707e-02 2.29586159e+00 -5.18322329e-02 2.29515686e+00 1.57064182e+00 -3.32803627e-01 1.61760349e+00 -1.34383329e-01 -1.52405016e+00 1.50687593e-01 -2.65336614e-05 1.40738353e+00 -1.57110968e+00 3.00728708e+00 3.14208753e+00 2.36592167e+00 4.69464016e+00 8.35479643e-01 3.17115090e+00 8.91451816e-02 3.14199202e+00 -2.83447320e+00 1.57066205e+00 -5.71412583e-01 3.37415438e-04 -4.39586974e-01 8.31767750e-01 -1.87271161e+00 -4.71974103e+00 3.98908340e+00 -3.80256805e-02 2.60776770e+00 4.71178569e+00 5.13895635e-01 1.46694629e-03 -1.77225257e+00 -3.16634838e+00 1.23363422e+00 4.79732317e+00 2.35487026e+00 5.58379060e-04 -5.81801504e-01] VQE eigenvalue: -199.99280093244582 VQE result: -85.99280093244582 Solution: 4 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 0, x12 = 0, x13 = 1, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e4d0>, [-1.2232633570207831, -2.4287973521444184, -0.4651426496071349, 0.41477174987673404, 2.657037066661154, 2.7379279641936742, -0.5300419944253849, -2.5182316308610693, 1.7204538366951114, 1.4720205172756966, -2.9486935493867925, -0.33477691506822405, 1.171299493920972, -2.952253673807867, 2.6344287224526983, 2.9043551995964245, 1.3982774758076149, -2.648120455202238, -2.699699586933687, -0.884337504349435, -2.9570083284895414, -0.9558124288218042, -3.0789854789749733, 2.9802625267321767, 2.0043782044813376, -2.698517433252648, 2.472025588427327, -1.8348280884205537, -1.8548541188582346, 1.09176091017485, 2.7536830440101223, -2.3675788602631913, -3.0964506861918837, -0.8222795364540496, -2.9867120450627747, 0.6587809058496674, 2.256766906773499, -1.9666891363619956, -2.4354189486028863, -0.9773519416960554, 2.8850597517551826, -2.323787740339115, 2.9312269628825014, -0.865572425077672, -0.16731869411377698, -1.3029316589638886, 2.7465489649484196, 2.8786281223007, 0.8539835701443863, -1.9852003568774723, 3.097307435344053, -2.497060743024612, 0.5079916465264818, -2.1588832444783064, 2.498667690896598, 2.800279921172681, 1.9125406480422935, -1.1567883331501185, -1.6157921648310416, 1.6013226373489617, -1.3128117593809494, -0.5040033352882363, -2.850959664101471, -2.310743118759729, -3.0124755791052675, -2.6519998166991128, -2.6815934355787694, -0.5011989968781259, 0.31904241647159726, 1.5134862618237355, -2.2475992212886537, -0.488902526801529, 0.860582993847931, -2.6103135542651152, -0.34676173910558594, -0.8214885332509669, 2.8207224998500395, -2.778065685611106, -0.5741183845235214, -0.5200876491533242, 1.4337003938855206, -1.1267573198901673, -1.8598839489569063, -1.2986611714243397, -0.18291896553807874, 2.8291193526527056, 1.8630714007550413, -1.4013372747805914, 0.365565701339559, 1.1824973821885463, 1.857668696544481, -0.33825915176927923, -0.6360034624362769, 1.6816363828972873, -0.4290379117943033, -1.58362867157363]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4cca0>} Classical optimization exited with an error index: 2 fev:115109 E => -196.81797638436635 Finnished. VQE Total time: 1053.39 s fev/s: 109.28 VQE solution parameters: [-1.56024583e+00 -3.14475950e+00 -1.91868035e+00 -2.06273836e-01 1.55721430e+00 3.13197117e+00 -1.55794786e+00 -7.02578385e+00 3.17971506e+00 2.51138559e+00 -2.24383813e+00 -5.76958182e-01 1.56886676e+00 -3.14286251e+00 3.14250861e+00 1.84782464e+00 1.56093857e+00 -3.12776362e+00 -1.57870485e+00 -1.57560806e+00 -4.70572441e+00 -1.56000112e+00 -4.71885305e+00 3.15580112e+00 1.93237247e+00 7.47445860e-03 1.58323631e+00 -5.00387665e-03 -2.51724317e+00 6.52872535e-01 3.22654166e+00 -2.23606588e+00 -1.57599840e+00 -2.78702476e+00 -1.56243703e+00 1.06497223e+00 1.56618591e+00 1.77968896e+00 -1.57086867e+00 2.33395797e-03 4.71388069e+00 -3.17366003e+00 1.57257908e+00 -5.86104146e-01 -8.93975883e-02 -2.56021089e+00 9.16979835e-02 5.87506590e-01 7.59661249e-01 -1.58020243e+00 4.71698332e+00 -3.13457227e+00 7.27428157e-01 -1.59111270e+00 4.69619955e+00 3.39401873e+00 1.56834233e+00 -3.61548712e-01 -1.56771881e+00 4.37733356e-01 -1.56169480e+00 -2.92891191e-02 -1.57800214e+00 -3.03953077e+00 -3.13487899e+00 -3.31085419e+00 -3.15317990e+00 1.38520294e-03 7.23361826e-01 -1.15484374e+00 -1.61560508e+00 -5.34487939e-01 8.38989889e-01 -1.20371761e-01 -2.24122320e-02 -5.67151661e-02 1.57396607e+00 -2.70002834e+00 1.47360060e-02 -5.48450926e-01 1.61860410e+00 -4.72136819e-01 -1.55297902e+00 5.38657071e-02 -1.11069043e+00 2.42350125e+00 2.78664912e+00 1.85083515e-01 -1.03610367e-02 1.01750095e+00 2.05076382e+00 -4.83941025e-01 -1.50271710e+00 4.11869647e-01 4.78178126e-01 -2.34734665e-01] VQE eigenvalue: -196.8225936596783 VQE result: -82.82259365967829 Solution: 5 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4edd0>, [-0.2925009274922288, 2.7464094912721233, -2.2458147063331784, -0.2360256285040312, 0.8627034869064856, -0.10500466656728547, -1.8620853984944288, -3.130011733890669, 1.2503017998538821, 0.7460372622853138, -3.092730524115285, -1.2656840878989775, 1.6878788325646488, 0.8100306282675924, 0.28405096986443734, -2.1600264717662885, 1.296183699934316, -0.17947968017369664, 1.1195300804014865, 1.6341926406477834, -1.6816146162938985, 1.6461632168498657, -1.381745430204042, 3.0411567979938727, -2.382385252065663, 2.410971417472717, -2.886827553268909, -1.529479241567156, 0.16400312962568364, 0.5128096046471509, -0.6519748174707609, -2.5005083979273195, -1.5544092402611946, -1.360959904427508, 1.603612489819854, 2.568404834187165, 0.5994781791435164, -2.9188476668346017, 1.8361759048411983, -1.2214265129537112, -1.005998245943954, 0.1896606983044551, -1.57678390346661, 2.638800150962803, -2.1139477990634896, -0.5351363761733161, -1.3214044528379072, 0.12462133953428323, 0.46484137812584203, 0.7988422265429276, 0.19713998967569957, -0.5604318403915323, 0.8456791209981582, -0.6068747946924491, 1.75018289499946, 1.8106721642229973, -1.3053055585538824, -0.8054771906783058, 0.8093427916499665, -2.1546929440095157, 1.2379881338222685, -0.7450114003108519, 0.5721624034286386, -2.264880334634949, 1.057198619337938, -0.9169815058903574, -0.17174724995494328, -0.5333959316704835, -0.1463024116785423, 1.2233087401126328, -1.1420306503642477, 0.955386480272578, -2.7632059925802763, -1.255473714205772, 1.5406979223288264, -2.81231681054039, 0.7611588614768205, -2.9810773797846437, -0.17888939631400858, 2.4413005098379656, -3.078069059529844, 0.16856542519343876, -2.7240320779154885, 2.306618751624452, 1.1705355713149155, 1.5202409173161904, 1.0619059431179831, -3.1012329036922557, -2.8828645144699, 0.7594913590101493, 3.1396142392410358, 2.3445532500761814, 1.2546629268691536, 1.4269110963846305, -1.717276083850741, 1.5809369740437864]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d360>} Classical optimization exited with an error index: 2 fev:111379 E => -209.99858272100536 Finnished. VQE Total time: 1034.05 s fev/s: 107.71 VQE solution parameters: [-1.57084447e+00 3.14157868e+00 -4.63895101e+00 -1.44944718e-01 -1.57537834e+00 -5.09297811e-02 -1.75721682e+00 -9.51664434e+00 3.18445767e+00 2.98404156e-01 -3.10131300e+00 -1.00131232e+00 1.57427525e+00 1.58344848e-04 2.21968611e-02 -5.01364010e+00 1.57088702e+00 1.45974887e-04 3.14169670e+00 1.71665493e+00 -1.57099842e+00 -5.39830377e-05 -1.19401208e+00 3.12907622e+00 -3.22410393e+00 2.98651553e+00 -3.14155135e+00 -8.14445235e-01 -4.14763777e-03 6.07170685e-01 -1.50962075e-01 -3.27159032e+00 -1.57071354e+00 5.94881411e-02 1.57097275e+00 1.04171467e+00 1.57075609e+00 -2.68871659e+00 1.57086431e+00 -1.17628439e-02 -1.57074633e+00 -1.94823892e-04 -1.57069263e+00 3.10761597e+00 -4.80104432e+00 1.27238717e-01 -1.65946191e+00 1.48402460e-01 2.19019294e-01 -4.71882536e-01 2.19094415e-01 -4.72000836e-01 1.57082051e+00 -3.30581952e-02 1.57082959e+00 3.15359271e+00 -1.57093299e+00 -4.89449617e-05 1.57073462e+00 -3.14168183e+00 1.57089119e+00 1.25062159e-04 1.57084596e+00 -3.12199058e+00 -4.75971710e-05 -1.12181304e+00 -5.11825209e-02 -4.91646702e-01 -2.07864294e-01 7.02041941e-01 -1.52968562e+00 4.39225997e-01 -1.54903907e+00 -7.10570962e-01 -3.40941147e-03 -4.50301778e+00 1.56404412e+00 -3.53971372e+00 -8.06534676e-04 2.68743731e+00 -4.71247268e+00 2.56523417e-01 -3.14162795e+00 4.07937837e+00 -3.76978067e-01 2.27936499e+00 1.65254881e+00 -4.19376553e+00 -4.71232931e+00 5.34499247e-02 1.56732362e+00 1.85943839e+00 1.42130863e+00 1.10689203e+00 -1.62294506e-01 2.67827053e+00] VQE eigenvalue: -209.9985860149189 VQE result: -95.99858601491891 Solution: 6 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4e830>, [-1.3325121483290079, -2.478966253343458, -0.24570461823898881, -1.066911427138884, -2.0844128049310613, -0.4919112530698526, 2.4956873424568, -0.4067088677506958, -0.3311747893362118, 1.3121034973048982, 0.1518135075348641, -2.329660376579831, 2.578571482426476, -0.35107715005604634, 1.8179626319133346, -0.6982181503064773, 1.9279703970207223, -0.6940631679203713, -1.7582895818220083, -1.9088652050719879, 2.7648192119514405, 0.5436856493427156, -2.8287323421792046, -0.7015327432053633, -1.6711434424094682, -2.6096766290876907, -1.9681709244665169, -2.783510907007801, 0.8675421921917907, -2.0522525333940695, 0.6960504907444922, 0.7069007453087326, 1.2875736484138907, 0.07614372746458775, -1.3545040165088, 2.3716351286091424, -0.9231816205146091, -0.26204448451959284, 0.8286229077685623, 0.10131195333430165, 2.8680752209057747, 2.857075429794035, 2.700260778964841, 2.7273821424108986, 0.5086875342724979, -0.061562249212327114, 1.282503787925159, -1.788071432064894, -1.471069363200911, -2.866343561214462, -2.1183285350257988, -3.117248138342325, 0.9715537168972306, -2.259389523055471, 1.8012594519953096, 1.134140054811259, 2.9573432292500623, -0.6502186550898181, 2.647683479159946, -0.290885264265627, -1.008427743718416, -2.498578569773598, 2.4054055603589646, 1.8522211929815864, -1.112570052962159, -0.2780662303954835, -1.0986560064665434, -2.9604539721386685, -2.862917517665752, -0.8249563071511479, -1.824691500178764, 0.15402979470413092, -1.9617044766879128, -1.874766863893809, 1.0849042949167638, 1.4803351512976883, -1.179780536363729, 2.261911521186706, -1.5416475327606958, -0.9805515347916951, 1.33505366683411, -2.86197267783124, 2.7280551372224453, -2.687081280067088, -0.24547739644744526, 1.411233742394061, -2.8433390520199695, 1.941521134274545, 3.0089756184003846, -0.24811247729561003, -2.39939995763712, -2.6296575916141465, -2.5212510277181495, 1.667817341891861, -0.5402732071088288, 2.6341259030639543]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4d6c0>} Classical optimization exited with an error index: 2 fev:110432 E => -209.99758022272098 Finnished. VQE Total time: 1022.96 s fev/s: 107.95 VQE solution parameters: [-1.57098817e+00 -3.14153404e+00 -6.78763442e-01 -3.96690329e-02 -2.28733461e+00 -3.19892312e-01 1.56704971e+00 1.11732208e-03 -6.03288989e-01 9.40759605e-02 1.34189582e-01 -1.24080752e-02 3.14364511e+00 -1.60665856e-01 3.14091301e+00 -6.49068549e-01 3.14172935e+00 -7.10655081e-01 -3.46081919e+00 -1.81197192e+00 1.57029241e+00 4.04904972e-04 -1.57207974e+00 -6.05265981e-04 -1.20923166e+00 -1.60696575e+00 -2.84200558e+00 -3.14024565e+00 1.75023179e-02 -3.30514222e+00 1.59973677e+00 2.75062697e-03 1.57069407e+00 8.12370390e-02 -1.57093835e+00 3.14117266e+00 -1.57100104e+00 -3.47760463e-01 1.57126399e+00 6.48580300e-02 4.71217707e+00 7.14634862e-04 1.57065106e+00 3.14183237e+00 1.57064271e+00 -1.50056157e-02 1.57082536e+00 -3.14137668e+00 -1.57092613e+00 -3.14176024e+00 -1.57066733e+00 -2.83149745e+00 1.57038665e+00 -2.69371499e+00 1.57082132e+00 1.20891212e+00 1.57098968e+00 -9.52026665e-05 1.57094551e+00 -1.98652415e-04 -1.57092332e+00 -3.13815952e+00 1.57092881e+00 3.02947835e+00 -5.65816563e-06 -3.24258771e-01 -7.73097879e-01 -2.02539375e+00 -3.14596570e+00 -9.21203543e-01 -4.11223101e+00 1.14947324e-01 -1.43697581e+00 -2.14045966e+00 1.57327339e+00 1.49291876e+00 -1.57046087e+00 1.75010686e+00 -1.57013079e+00 -1.11583533e+00 1.49549413e+00 -1.18438694e+00 3.14056943e+00 -3.23471808e+00 7.22629071e-03 8.78965364e-01 -1.60457264e+00 2.15979401e+00 1.27119881e+00 -2.14683270e-01 -1.55357858e+00 -4.02468453e+00 -3.11291684e+00 2.08030110e+00 -8.91733074e-01 4.50953700e+00] VQE eigenvalue: -209.99758087458108 VQE result: -95.99758087458108 Solution: 7 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 1, x23 = 0, x30 = 0, x31 = 0, x32 = 0, x33 = 1, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4fa30>, [-0.3729712867242907, -2.6568869407419937, -0.4590772429846073, 1.6011308758309815, 2.0692943646534205, -2.894338714976838, -2.008172680876927, -0.0627473315144842, -2.336807860461171, 2.3316438354535185, 2.729798270829032, -1.133505489314388, -0.4093892164590769, 0.3584812592789768, -1.3477068619387016, 0.2580862187600701, -1.8775097318446579, -1.2777407020633265, -0.36578422059256255, 0.6576603915513144, 0.22723156053884974, -1.501756832824577, -1.685226480380696, -2.395588574833931, 1.7812430477166181, -2.520180810859432, 1.4632596490885854, -1.578501424186639, -1.3536683926293236, 1.4833559575619706, 1.0029270132657588, 1.520037963105386, 0.0960262904654936, 2.2562655779904395, -2.3763390647952036, 0.9122994145564745, -2.3986417267035183, 1.4908953723694385, -0.8865281580357798, 1.098816668673205, 1.2785271351816636, 1.0091327012590732, -1.74950280690561, 2.084760171072877, -1.6327731173670696, 0.11406053032000774, 1.0973316364576347, -1.673820618071706, 0.8074629696530184, -1.3393800271700553, -2.064765426266847, 1.9462092883142779, 0.3337802084267505, -1.0814322825761393, 0.5367784722602833, -2.9827135328031513, -2.325891587457225, -0.6560848583978052, 2.9892667498848127, 0.06581333681904722, -2.661204149270768, 1.665299299541224, 1.7683639945936882, 1.726632984538763, 0.43666905154071145, 1.2296114344149975, -1.8003968844556753, 1.4612212877341095, 1.9865797517770902, 1.633417945880674, -0.9207228790217519, 0.5719461099184926, 0.8104640357626898, 2.5183625834709895, -2.4629213338371496, 2.0981677625783615, 0.1660995125597542, -0.8883536803907317, -0.2789551970158599, -3.0622014723592916, -1.758829491754737, 0.9598408764457913, 1.0106458312235729, -0.033307540505519206, 2.848330512333326, -0.11991403521478627, -1.1690264646503088, 2.1851714589526408, -1.5132530345832684, 0.6553738828842013, 1.2781183441148087, 2.021277457314274, 1.7930247382764497, -0.7282693659056769, -2.769751824690332, -2.901022899740957]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e3b0>} Optimization terminated successfully. Current function value: -172.999636 Iterations: 58507 Function evaluations: 67252 fev:67252 E => -172.99963526960406 Finnished. VQE Total time: 594.21 s fev/s: 113.18 VQE solution parameters: [-1.57086217e+00 -7.45719433e-05 -7.82677856e-01 1.57047709e+00 1.57077468e+00 -3.14162678e+00 -3.14161249e+00 -2.95252829e-02 -1.57074822e+00 3.14159335e+00 3.53618420e+00 -1.57096335e+00 -1.84533440e-04 -7.19651728e-02 -1.57081706e+00 -5.19431308e-04 -1.57081099e+00 1.12494629e-04 -2.07182362e-02 1.48529750e+00 4.91552362e-01 -1.57058983e+00 -1.57079284e+00 -3.14162430e+00 1.57449750e+00 -1.57092993e+00 3.11601140e+00 -1.18898886e+00 -1.57085213e+00 -1.01974132e-04 1.59793519e+00 1.57090239e+00 6.91858471e-02 1.57008527e+00 -4.71242305e+00 7.88739357e-01 -1.23220586e+00 1.38839939e+00 -1.23216540e+00 1.38838976e+00 1.57070058e+00 3.94573471e-01 -1.57077078e+00 3.14158558e+00 -1.57080042e+00 -2.17912343e-03 1.57081026e+00 -1.12954439e+00 1.57086039e+00 -2.06510177e-02 -1.57080199e+00 3.14158051e+00 1.57058303e+00 -2.65006411e+00 1.57076722e+00 -1.56704876e+00 -1.57079874e+00 5.69842425e-05 1.57092147e+00 2.66893165e-02 -1.57083897e+00 1.54355626e+00 1.57074734e+00 3.14157814e+00 -4.30974955e-04 7.34063554e-01 1.06777251e-04 1.50416346e+00 1.57077209e+00 1.42735518e+00 -3.52024674e-06 5.86796577e-01 1.57076550e+00 2.13735224e+00 -4.71246547e+00 2.52554941e+00 -8.24118323e-04 -3.20244578e-01 2.85318924e-05 -2.26986086e+00 -1.57005631e+00 3.52160609e-01 1.57092269e+00 -1.92990578e-02 3.14166742e+00 -3.87025076e-02 -1.57065895e+00 1.47439268e+00 -1.56692706e+00 5.43170252e-01 3.14138422e+00 2.01074637e+00 1.57068922e+00 -8.53333237e-01 -1.57058670e+00 -1.85058598e+00] VQE eigenvalue: -172.99963594376695 VQE result: -58.99963594376695 Solution: 8 x00 = 1, x01 = 0, x02 = 0, x03 = 1, x10 = 0, x11 = 0, x12 = 1, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 0, x30 = 0, x31 = 1, x32 = 0, x33 = 0, VQE starting with optimizer scipy.optimize._minimize.minimize method:nelder-mead and sample_rate:None ... optimizer_params: odict_keys(['fun', 'x0', 'args', 'method', 'jac', 'hess', 'hessp', 'bounds', 'constraints', 'tol', 'callback', 'options']) Calling optimizer with: [<function VQE.run.<locals>.objective_function at 0x76957cd4cca0>, [1.4228925819646223, 2.900892504106972, -0.9854210160356156, -0.3694820957620659, 1.4187307748990357, 0.9916829649629468, -1.5072947585256626, 1.0780993820570828, -1.2258342507965194, -0.902529890981917, 0.2482694190671766, 1.4596708051511387, -2.1914731748585967, -3.003442933161421, 0.8031792918377247, -2.9872482310502257, -2.8590802801587842, -1.723002867209286, 0.9668369094612901, -2.723477473544107, -2.749485651355531, 2.966249336667051, -0.485986201350908, 2.4657037121760803, -1.7811304540102055, -0.40706759894963174, -0.8919915563343519, -2.029873893256931, -1.0755984760664385, 3.058628335627459, 1.5538883366778276, -0.7372169443024759, -0.5699827089108358, -1.484459698549977, 0.19689415854794667, 1.4805503841994456, 1.1727352737189705, -0.23467800580415954, -2.8780818514657174, 2.6484116566577, -0.5721857903675205, -0.6892725469715852, -3.122051227927888, -2.27308545301795, 2.317574373343242, 0.08755364998784376, 1.4604311980964981, -2.210626366555861, -1.067821017953698, 2.1371410144733654, 2.014756908883929, -1.5909385344541862, -3.0035177191506923, 1.9255887853175269, -2.080714481920743, 1.807555496122979, 1.1539649747420224, -2.084039824622929, -2.6484339609025436, 2.687000614711452, 0.6149881077013046, 0.7571877487143395, -0.26696121613649026, -2.1986688938443084, 0.6406958588003815, -1.5552587632768358, 1.9219928082341706, 1.4622163175355807, -2.970267877143687, 2.716993900688059, -2.9134121923287855, -2.5784978662732496, -1.302287161612571, -2.194031380654251, -1.6578493382454917, -0.9059757025905903, 1.4796883519900312, -0.5987161779834662, -1.446139471406054, -0.048297880185173, -0.6748565148191679, -1.1890036139470022, 2.516677459621679, 0.316976965839356, 2.9991372036692603, 1.7147592408478314, 0.4429601509698067, -1.4925920999260054, 1.1739733159337442, -0.2769771404760917, 1.3910200383404057, -0.6045755740893375, -0.02510109710978803, -3.011632709877502, 1.5077037361101757, -2.9262456232695264]] {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e4d0>} Classical optimization exited with an error index: 2 fev:117935 E => -184.00054376956643 Finnished. VQE Total time: 1030.05 s fev/s: 114.49 VQE solution parameters: [ 1.56978298e+00 -3.44836676e-03 -1.57062412e+00 -1.48388746e-03 1.57002545e+00 1.57105521e+00 -1.57048132e+00 1.57096046e+00 -1.57102506e+00 8.63997124e-04 -2.28490384e-02 9.86427914e-01 -1.57299945e+00 -3.14131828e+00 1.72865852e-01 -6.60620182e-01 -3.14343513e+00 -9.28587524e-01 2.91161600e-01 -5.69083303e+00 -1.57003385e+00 3.14123802e+00 2.44812404e-02 2.19378165e+00 -1.57191581e+00 -4.82466507e-03 -1.56515696e+00 -1.57781139e+00 -1.57927038e+00 4.71492850e+00 1.57213051e+00 -4.53924507e-03 1.56949598e+00 -1.26885611e+00 2.89280066e-01 1.56994998e+00 1.57013613e+00 2.08339478e-04 -2.85163587e+00 1.57014228e+00 -8.13931255e-01 -5.30477089e-01 -5.46667537e+00 -2.59747902e+00 1.57025648e+00 1.05115254e-01 1.57022349e+00 -3.14111151e+00 -1.57137166e+00 3.14182326e+00 1.57128336e+00 -1.66846826e-01 -4.12340254e+00 5.07322422e-01 -2.15886698e+00 2.63825456e+00 1.26878632e+00 -1.57767366e+00 -1.57065437e+00 3.14117669e+00 1.26871820e+00 1.54370303e+00 -1.57162099e+00 -3.18552421e+00 1.89496712e-03 -1.72624263e+00 4.71329069e+00 1.25824510e+00 -4.71522681e+00 3.01670407e+00 -6.28374149e+00 -6.93024699e-01 -1.56110744e+00 -1.58558887e+00 -3.14347565e+00 -6.52183615e-01 1.66707329e+00 -3.41223355e-01 -1.57048545e+00 -4.95483544e-02 -1.32949457e+00 -1.73641390e+00 3.14327817e+00 8.57684301e-02 4.69465790e+00 3.08504189e+00 2.80721231e-03 -8.55524042e-01 1.57711384e+00 -3.85297364e-02 1.55858222e+00 -8.41917189e-01 -4.62275634e-02 -7.47493267e-01 3.12032765e+00 -1.02947171e-01] VQE eigenvalue: -184.00067087534984 VQE result: -70.00067087534984 Solution: 9 x00 = 1, x01 = 0, x02 = 0, x03 = 0, x10 = 0, x11 = 1, x12 = 0, x13 = 0, x20 = 0, x21 = 0, x22 = 0, x23 = 1, x30 = 0, x31 = 0, x32 = 0, x33 = 0, {'method': 'nelder-mead', 'tol': 0.001, 'options': {'maxiter': 100000, 'adaptive': True, 'fatol': 0.0001, 'disp': True}, 'callback': <function VQE.run.<locals>.trace_iteration at 0x76957cd4e4d0>} [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115, -95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097, -79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998, -95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874, -95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568, -95.95319254022507, -95.97353711991252, -95.94687354505373, -95.87459624709459, -79.90218124648075, -69.99652045764691, -85.99263923618861, -79.98331034194987, -95.8990149557406, -79.99414466987284, -74.33845122673526, -93.80198517706091, -49.05059776278679, -34.06108509207752, -0.7835182515148205, -56.33127363103466, -46.39010288890995, -40.03917644229523, -50.13753622769087, -45.1888775536836, -79.99959834377123, -95.99999308588454, -79.99916418508184, -95.99712996679304, -85.99280093244582, -82.82259365967829, -95.99858601491891, -95.99758087458108, -58.99963594376695, -70.00067087534984] [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0], [1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]] CPU times: user 5h 21min 42s, sys: 1h 3min 14s, total: 6h 24min 57s Wall time: 5h 17min 4s
for i, arg in enumerate(kwargs):
print( arg["method"] if arg.get("method") else "NONE")
print(i, results[i*10:(i+1)*10])
NONE 0 [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115] CG 1 [-95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097] COBYLA 2 [-79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998] BFGS 3 [-95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874] SLSQP 4 [-95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568] Powell 5 [-95.95319254022507, -95.97353711991252, -95.94687354505373, -95.87459624709459, -79.90218124648075, -69.99652045764691, -85.99263923618861, -79.98331034194987, -95.8990149557406, -79.99414466987284] TNC 6 [-74.33845122673526, -93.80198517706091, -49.05059776278679, -34.06108509207752, -0.7835182515148205, -56.33127363103466, -46.39010288890995, -40.03917644229523, -50.13753622769087, -45.1888775536836] nelder-mead 7 [-79.99959834377123, -95.99999308588454, -79.99916418508184, -95.99712996679304, -85.99280093244582, -82.82259365967829, -95.99858601491891, -95.99758087458108, -58.99963594376695, -70.00067087534984]
NONE 87s per run
0 [-95.99999710751007, -95.99999981436119, -79.99999939882011, -79.99999941892904, -69.49999983440878, -79.9999997333704, -69.99999878620403, -79.99999991996103, -95.99999682436939, -79.999999935115]
CG 100s per run
1 [-95.99999987653527, -95.99999999790253, -79.99999999315659, -75.99999967108741, -69.49999991856231, -95.99999957124055, -75.99999949840787, -79.99999999466465, -95.9999995011978, -79.99999999618097]
COBYLA 82s per run
2 [-79.99979220645096, -79.99995290919352, -95.9997689253631, -79.99978443382881, -95.99996476231684, -79.99983333578456, -95.99948804494534, -75.99926352608807, -95.99959878974275, -69.4924319524998]
BFGS 86s per run
3 [-95.99999998907293, -95.9999999992776, -79.99999999504831, -79.99999999940411, -69.49999999967466, -79.99999999620968, -69.99999999359255, -79.99999999951663, -95.99999999927931, -79.99999999882874]
SLSQP 37s per run
4 [-95.99962121273015, -79.99975977217105, -75.99982034414984, -85.99974083277789, -63.99901346094046, -81.99951715606446, -95.99966475567095, -69.99965451555488, -95.9992291716867, -75.99989611630568]
Powell 35s per run
5 [-95.95319254022507, -95.97353711991252, -95.94687354505373, -95.87459624709459, -79.90218124648075, -69.99652045764691, -85.99263923618861, -79.98331034194987, -95.8990149557406, -79.99414466987284]
TNC 250 - 850s / per run
6 [-74.33845122673526, -93.80198517706091, -49.05059776278679, -34.06108509207752, -0.7835182515148205, -56.33127363103466, -46.39010288890995, -40.03917644229523, -50.13753622769087, -45.1888775536836]
nelder-mead 680-1030s per run
7 [-79.99959834377123, -95.99999308588454, -79.99916418508184, -95.99712996679304, -85.99280093244582, -82.82259365967829, -95.99858601491891, -95.99758087458108, -58.99963594376695, -70.00067087534984]
## solution
# evaluate quad prog with found solution vector
exact_result = -96
print("Exact Result:", np.real(exact_result))
idx = np.argmin(results)
x = x_list[idx]
print("VQE result:", results[idx])
print("QUBO solution variables:", x)
print("QUBO value: ", quad_prog.objective.evaluate(x))
!pip3 install dwave-system
!pip3 install dwave-neal
import numpy as np
# DWave formulation
N=4
Q = np.zeros((N**2, N**2))
# H_B
for j in range(N):
for i in range(N):
for k in range(N):
Q[N*i + j, N*k + ((j + 1) % N)] += w[i, k]
#print(Q)
#H_A
fine1 = 10
fine2 = 10
for j in range(N):
for i in range(N):
Q[N*i + (j % N), N*i + (j % N)] -= fine1
for k in range(i + 1, N):
Q[N*i + (j % N), N*k + (j % N)] += 2*fine1
for i in range(N):
for j in range(N):
Q[N*i + (j % N), N*i + (j % N)] -= fine2
for k in range(j + 1, N):
Q[N*i + (j % N), N*i + (k % N)] += 2*fine2
#print(Q)
# constraint to start at (0,0) and go to (1,1)
Q[N*0 + 0, N*0 + 0] -= 10
Q[N*1 + 1, N*1 + 1] -= 10
Q
array([[-30., 20., 20., 20., 20., 1., 0., 0., 20., 9., 0., 0., 20., 1., 0., 0.], [ 0., -20., 20., 20., 0., 20., 1., 0., 0., 20., 9., 0., 0., 20., 1., 0.], [ 0., 0., -20., 20., 0., 0., 20., 1., 0., 0., 20., 9., 0., 0., 20., 1.], [ 0., 0., 0., -20., 1., 0., 0., 20., 9., 0., 0., 20., 1., 0., 0., 20.], [ 0., 1., 0., 0., -20., 20., 20., 20., 20., 1., 0., 0., 20., 9., 0., 0.], [ 0., 0., 1., 0., 0., -30., 20., 20., 0., 20., 1., 0., 0., 20., 9., 0.], [ 0., 0., 0., 1., 0., 0., -20., 20., 0., 0., 20., 1., 0., 0., 20., 9.], [ 1., 0., 0., 0., 0., 0., 0., -20., 1., 0., 0., 20., 9., 0., 0., 20.], [ 0., 9., 0., 0., 0., 1., 0., 0., -20., 20., 20., 20., 20., 1., 0., 0.], [ 0., 0., 9., 0., 0., 0., 1., 0., 0., -20., 20., 20., 0., 20., 1., 0.], [ 0., 0., 0., 9., 0., 0., 0., 1., 0., 0., -20., 20., 0., 0., 20., 1.], [ 9., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., -20., 1., 0., 0., 20.], [ 0., 1., 0., 0., 0., 9., 0., 0., 0., 1., 0., 0., -20., 20., 20., 20.], [ 0., 0., 1., 0., 0., 0., 9., 0., 0., 0., 1., 0., 0., -20., 20., 20.], [ 0., 0., 0., 1., 0., 0., 0., 9., 0., 0., 0., 1., 0., 0., -20., 20.], [ 1., 0., 0., 0., 9., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., -20.]])
# Dwave simulator
from dwave.samplers import SimulatedAnnealingSampler
sampler = SimulatedAnnealingSampler()
sampleset = sampler.sample_qubo(Q, num_reads=100, annealing_time=1000)
data = sampleset.aggregate().to_pandas_dataframe()
data
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | energy | num_occurrences | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -96.0 | 93 |
1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -86.0 | 4 |
2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | -76.0 | 1 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | -76.0 | 1 |
4 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -76.0 | 1 |
# get your token from your account via the dwave portal https://cloud.dwavesys.com/leap/
TOKEN="DEV-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
from dwave.system import DWaveSampler, EmbeddingComposite
sampler = EmbeddingComposite(DWaveSampler(token=TOKEN))
sampleset = sampler.sample_qubo(Q, num_reads=100, annealing_time=1000)
#sampleset = sampler.sample_qubo(Q, num_reads=10, annealing_time=100)
data = sampleset.to_pandas_dataframe().drop(columns=['chain_break_fraction'])
data
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | energy | num_occurrences | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -96.0 | 46 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | -86.0 | 5 |
2 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -86.0 | 19 |
3 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -78.0 | 1 |
4 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -78.0 | 1 |
5 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | -76.0 | 1 |
6 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -76.0 | 2 |
7 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | -76.0 | 1 |
8 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -76.0 | 1 |
9 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | -76.0 | 1 |
10 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -76.0 | 2 |
11 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -74.0 | 2 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | -70.0 | 1 |
13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | -69.0 | 1 |
14 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -68.0 | 1 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -68.0 | 1 |
16 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | -67.0 | 1 |
17 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | -67.0 | 1 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -66.0 | 1 |
19 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | -64.0 | 1 |
20 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -60.0 | 2 |
21 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | -59.0 | 1 |
22 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | -66.0 | 1 |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | -50.0 | 1 |
24 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | -50.0 | 1 |
25 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -49.0 | 1 |
26 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | -48.0 | 1 |
27 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | -57.0 | 1 |
28 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -47.0 | 1 |
Ising formulations of many NP problems, Andrew Lucas, https://arxiv.org/pdf/1302.5843.pdf