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Motivation 

The modern automotive sector is highly competitive. Therefore, vehicle manufacturers aim 

to improve research and development and accelerate design and manufacturing processes 

by using innovative and efficient digital instruments and tools. One such instrument is digital 

modeling for automotive metal forming, which is an essential factor determining a vehicle's 

marketability, and also a necessary legal requirement. Automotive metal forming consists of 

compressing metal into a specific shape to create various vehicle's components, such as 

bumper beams, door frames, seat tracks, cross sills, to name a few (Figure 1). The process 

is based on the plastic deformation of metal sheets by a stamping press. Without such 

technology, car production would be an extremely challenging task1. 

For decades, physical testing for the deformation of prototype parts was the only reliable 

approach to verify the metal forming process requirements. Recently, virtual structural 

analysis and simulations became a promising alternative, quantitatively surpassing physical 

testing approaches in the vehicle production process. Robust and accurate simulations of 

material behaviour during the metal forming process can increase R&D productivity by 

enabling engineers to develop safer products. Simulations also reduce the time and effort 

required to evaluate alternative designs due to shorter feedback cycles. 

Nowadays, numerical simulations of metal forming are actively used in the pre-production 

phase of vehicle components' manufacturing. The feasibility studies using finite element 

analysis are performed in very early design phases of sheet metal parts forming, predicting 

the geometries and properties of components, and optimizing them by varying the model 

parameters and the forming tools' shapes. Process simulation for these cases needs to 

consider numerous physical phenomena, including mechanical material properties and 

fracture behaviour at high forming speeds, and others. Using forming simulations allows for 

realistic representations of forming processes. It helps conduct feasibility studies and 

efficiently develop the optimal vehicle components that satisfy the cost and quality 

 

1 What is automotive metal forming (https://ltcroll.com/automotive-metal-forming ). 

FIGURE 1 SHEET METAL FORMING DIE EXAMPLE (SOURCE: 

AUTOFORM). 

https://ltcroll.com/automotive-metal-forming


 

 

requirements. Based on the numerical results, the manufacturing process and physical tool 

testing take place2.  

Reducing effort and expenditure for prototyping takes time and commitment. In this regard, 

fast, accurate and robust simulations play a central role, enabling automakers to reach new 

passive safety milestones throughout the product development process [1]. 

Classical solvers 

Modern computing efficiency increased to a state where we can simulate physical 

deformation processes in realistic 3D models. Nevertheless, it is still essential to have a 

quality mathematical interpretation of the physical mechanism at this stage. A proper 

method will improve the modelling performance and accuracy and provide a better mastery 

of the mechanism itself characterization. 

The widely-used classical numerical methods for structurral analysis are the grid-based 

techniques, which interpolate the initial continuous system of Partial Differential Equations 

(PDE) on a grid of 3D points. Finite Difference Method (FDM), Finite Volume Method (FVM), 

Finite Element Method (FEM), Spectral Method (SM), and Discontinuous FEM are 

techniques used to derive the spatial derivative operators' discrete representation. The main 

difference between them lies in the way they represent the exact solution by an approximate 

one and how this approximate solution satisfies the PDE.  In FDM, this representation is 

trivial and intuitive, requiring fewer degrees of freedom and uniform meshes, making the 

approach less expensive in the class. However, more sophisticated and costly discretization 

techniques, such as DG FEM, provide better accuracy and convergence for models with 

complex geometries and high heterogeneities. Some generic properties of the methods 

mentioned above regarding the different numerical criteria are shown in Table 1 [2].  

Over the years, FEM became the most popular automotive metal forming simulation tool for 

its balance between numerical cost and accuracy. In BMW, some of the forming simulations 

 

2 Simulation in forming technology 
(https://www.iwu.fraunhofer.de/content/dam/iwu/en/documents/Brochures/IWU-KB-Simulation-in-
Forming-Technology.pdf).  

Numerical 
method 

Complex 
geometries 

High-order 
accuracy and 
hp-adaptivity 

Explicit 
semi-

discrete 
form 

Conservation 
laws 

Elliptic 
problems 

FDM - + + + + 
FVM + - + + (+) 
FEM + + - (+) + 
DG FEM + + + + (+) 

TABLE 1 GENERIC PROPERTIES OF THE MOST WIDELY-USED NUMERICAL METHODS ('+' REPRESENTS 

SUCCESS, '-' - SHORT-COMING IN THE METHOD, '(+)' - METHOD CAN BE USED BUT IT REMAINS LESS 

NATURAL CHOICE). 

 

https://www.iwu.fraunhofer.de/content/dam/iwu/en/documents/Brochures/IWU-KB-Simulation-in-Forming-Technology.pdf
https://www.iwu.fraunhofer.de/content/dam/iwu/en/documents/Brochures/IWU-KB-Simulation-in-Forming-Technology.pdf


 

 

(similar to the crash modelling) are performed using LS-DYNA commercial solver, based on 

the explicit FEM model3. Realistic 3D simulations of different vehicle components (especially 

those with complex geometries) are highly challenging and numerically costly (require 

several days/weeks), still providing with numerical drawbacks due to the imperfect 

approximation. To minimize the problem size, engineers are often obliged to employ several 

simplifications such as 2D-shell elements for the discretization, rigid forming tools and 

simplified material models instead of realistic 3D ones. It reduces the simulation time to 

hours; however, the simplified model's predictability is also highly impacted. A robust 

numerical approach will allow increasing the efficiency and predictability of numerical 

simulations while aiming at zero-prototyping for sustainable vehicle components' 

manufacturing. Using Quantum Computing to enhance the convenient classical approaches 

may potentially accelerate computations, improving the accuracy and enabling larger and 

more realistic model. 

Quantum computing approach 

One of the earliest and well-known attempts to solve the linear systems of equations faster 

and more efficient by the means of Quantum Computing was made by Harrow, Hassidim, 

and Lloyd [3]. However, regarding the Noisy Intermediate-Scale Quantum (NISQ) devices' 

limitations, the proposed algorithm (HHL) is still a long-term goal, mainly because it requires 

a Quantum Random Access Memory (QRAM) or another efficient tool for generating an 

analog-encoded quantum state.  

In the near-term perspective, there have been some advancements in the development of 

variational algorithms for solving the linear systems of equations - Variational Quantum 

Linear Solver (VQLS) [4], and for finding the spectrum of eigenvalues and eigenvectors for a 

density matrix - Variational Quantum State Diagonalisation (VQSD) [5]. Both algorithms 

demonstrate good robustness to the NISQ restrictions, although they lack an efficient state 

preparation routine to decompose the initial classical matrices into quantum states' 

products. It is an essential step to preserve the algorithm's quantum advantage with respect 

to its classical counterparts. 

Most promising recent developments of quantum algorithms for solving non-linear PDEs 

was done by the group of scientists from the University of Oxford and University of 

Singapore in 2019 [6] and the researchers from the University of Exeter and Qu\&Co in 2020 

[7]. 

The first approach is based on the tensor networks programming model and and it uses the 

multiple copies of variational quantum states to treat the non-linearities efficiently. In the 

second work authors introduce Differentiable Quantum Circuits (DQC) resulting from an 

analytical derivation of the functions defined as expectation values of the parametrized 

quantum circuit, thus avoiding the discretization error accumulation. The DQCs are trained 

to satisfy PDEs and specific boundary conditions. 

 

3  How BMW uses Ansys LS-DYNA to predict vehicle behaviour in collisions 
(https://develop3d.com/simulation/ansys-lsdyna-bmw-predict-vehicle-behaviour-in-collisions ). 

https://develop3d.com/simulation/ansys-lsdyna-bmw-predict-vehicle-behaviour-in-collisions


 

 

Governing equations 

From the mathematical point of view the problem consists in solving of system of PDEs, 

based on the continuity equation, the equation of motion, the dissipation inequality, along 

with appropriate conditions and an adequate constitutive relation for the Cauchy stress 

tensor.    

To briefly describe the governing equations let us consider a solid body in its onloaded 

condition 𝑅 and the body forces 𝑏 acting on this body per unit volume. Let us consider the 

boundary conditions, specifying displacements𝑢∗(𝑥)  on a portion ∂1𝑅  or tractions on a 

portion ∂2𝑅 of the boundary ∂𝑅 of 𝑅. The problem consists in calculating the displacements 

𝑢𝑖, strains ε𝑖𝑗 and stresses σ𝑖𝑗 which satisfy the following equations [8]:  

• Displacement equation: 

ε𝑖𝑗 =
1

2
(
∂𝑢𝑖
∂𝑥𝑗

+
∂𝑢𝑗

∂𝑥𝑖
) ; 

• The equation of static equilibrium for stresses: 

∂σ𝑖𝑗

∂𝑥𝑖
+ 𝑏𝑗 = 0; 

• The boundary conditions on displacement and stress: 

𝑢𝑖 = 𝑢𝑖
∗   𝑜𝑛   ∂1𝑅,        σ𝑖𝑗𝑛𝑖 = 𝑡𝑗

∗  𝑜𝑛   ∂2𝑅; 

• The hypoelastic constitutive law, which relates stress to strain as follows: 
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and 𝐸 = 𝑛σ0/ε0 is the slope of the uniaxial stress-strain curve at ε𝑒 = 0. 

The descriptions for material constants 𝑛, σ0 and ε0 for hypoelastic constitutive law can be 

found in [8] (section 3.5). Note that this material model does not describe any actual material, 

but is sometimes used to approximate the more complicated stress-strain laws for plastic 

materials. Governing equations in terms of the Virtual Work Principle as well as an example 

of FEM discretization are proposed in [8] (section 8.3). 



 

 

Using more sophisticated models and approximations is not prohibited for developing a 

future numerical approach and its validation on a test example proposed below. The principal 

metrics would consist of comparison (together with the specialists of BMW) of the 

computation results for concrete discretization models with state-of-the-art industrial 

solutions and the level of innovation built on top of the existing established classical and 

quantum approaches. 

Test model 

A tensile test, or so-called tension test, is one of the most fundamental and common 

mechanical testing types to determine materials' mechanical properties. By applying the 

pulling (tensile) force to a material (specimen) and measuring the specimen's response to 

the stress, engineers can define the material's maximal elongation and robustness. 

A tensile specimen generally represents a standardized sample cross-section. It has two 

shoulders and a gage in between. The shoulders must be large enough to be gripped, 

whereas the gage section has a small cross-section to ensure the deformation and failure 

occur in this area (Figure 2) [9]. 

FIGURE 2 SPECIMEN MODEL USED FOR NUMERICAL SIMULATIONS 

(SOURCE: BMW, EP-40). 

FIGURE 3 EXPERIMENTAL 

REALISATION OF UNI-AXIAL 

TENSILE TEST. 



 

 

During the tensile test, the specimen is placed in the testing machine and slowly extended 

until fracturing (Figure 3). 

The gage section's elongation is recorded against the applied force during the test. The data 

is manipulated so that it is not specific to the geometry of the test sample. The elongation 

measurement (the change from initial to final gage length Δ𝐿 = 𝐿 − 𝐿0) is used to calculate 

the engineering strain ε = Δ𝐿/𝐿0 . The tensile force measurement 𝐹𝑛  and the specimen's 

nominal cross-section 𝐴 are used to calculate the engineering stress σ =
𝐹𝑛

𝐴
. The machine 

performs these calculations as the force increases, enabling building the corresponding 

stress-strain curve and showing the material's reaction on the applied force. The point of 

break or failure is of engineers' interest, including other important properties such as 

modulus of elasticity, yield strength, and strain. An extensive description of the tensile test 

process, equipment, results is proposed in [9].  

The proposed test geometry, as well as a choice of material, are not mandatory. It can be 

used as a validation example to build a discretization accordingly to the employed numerical 

technique and the simulation capacities of hardware (open choice).  

  



 

 

References 

 

[1]  P. Spethmann, S. H. Thomke and C. Herstatt, “The impact of crash simulation on,” 

Technical report, Working Paper, 2006.  

[2]  J. S. Hesthaven and T. Warburton, “Nodal discontinuous Galerkin methods: algorithms, 

analysis,” Springer Science & Business Media, 2007.  

[3]  A. W. Harrow, A. Hassidim and S. Lloyd, “Quantum algorithm for linear systems of 

equations,” Physical review letters, 2009.  

[4]  C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio and P. Coles, “Variational 

quantum linear solver: A hybrid algorithm for linear systems,” Bulletin of the American, 

vol. 65, 2020.  

[5]  R. LaRose, A. Tikku, É. O'Neel-Judy, L. Cincio and P. J. Coles, “Variational quantum 

state diagonalization,” npj Quantum Information, vol. 5, no. 10, pp. 1-10, 2019.  

[6]  M. Lubasch, J. Joo, P. Moinier, M. Kiffner and a. D. Jaksch, “Variational quantum 

algorithms for nonlinear problems,” Physical Review A, vol. 101, no. 1, 2020.  

[7]  O. Kyriienko, A. E. Paine and V. E. Elfving, “Solving nonlinear differential equations with 

differentiable quantum circuits,” arXiv preprint arXiv:2011.10395, 2020.  

[8]  A. F. Bower, Applied mechanics of solids, CRC press, 2004.  

[9]  J. R. Davis, “Tensile testing,” ASM international, 2004.  

 

 

 


