
Evidence of Scaling Advantage for the Quantum Approximate
Optimization Algorithm on a Classically Intractable Problem

Ruslan Shaydulin,1, ∗ Changhao Li,1 Shouvanik Chakrabarti,1 Matthew DeCross,2 Dylan Herman,1

Niraj Kumar,1 Jeffrey Larson,3 Danylo Lykov,1, 4 Pierre Minssen,1 Yue Sun,1 Yuri Alexeev,4 Joan M. Dreiling,2

John P. Gaebler,2 Thomas M. Gatterman,2 Justin A. Gerber,2 Kevin Gilmore,2 Dan Gresh,2 Nathan Hewitt,2

Chandler V. Horst,2 Shaohan Hu,1 Jacob Johansen,2 Mitchell Matheny,2 Tanner Mengle,2 Michael Mills,2

Steven A. Moses,2 Brian Neyenhuis,2 Peter Siegfried,2 Romina Yalovetzky,1 and Marco Pistoia1

1Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA
2Quantinuum, Broomfield, CO 80021, USA

3Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
4Computational Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for
solving optimization problems on quantum computers. However, the potential of QAOA to tackle
classically intractable problems remains unclear. In this paper, we perform an extensive numerical
investigation of QAOA on the Low Autocorrelation Binary Sequences (LABS) problem. The rapid
growth of the problem’s complexity with the number of spins N makes it classically intractable even
for moderately sized instances, with the best-known heuristics observed to fail to find a good solution
for problems with N ⪆ 200. We perform noiseless simulations with up to 40 qubits and observe that
out to this system size, the runtime of QAOA with fixed parameters and a constant number of layers
scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS.
The combination of QAOA with quantum minimum-finding on an idealized quantum computer gives
the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental
progress in compiling and executing QAOA for the LABS problem using an algorithm-specific error
detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility
of QAOA as an algorithmic component when executed on an idealized quantum computer.

INTRODUCTION

Quantum computers have been shown to have the po-
tential to speed up the solution of optimization prob-
lems. At the same time, only a small number of algorith-
mic primitives are known that provide broadly applicable
speedups. These include amplitude amplification1,2 and
quantum walks more generally,3,4 as well as the recently
introduced short path algorithm.5,6

The dearth of provable speedups in quantum optimiza-
tion motivates the development of heuristics. A leading
candidate for demonstrating a heuristic speedup in quan-
tum optimization is the quantum approximate optimiza-
tion algorithm (QAOA).7,8 QAOA uses two operators ap-
plied in alternation p times to prepare a quantum state
such that, upon measuring it, a high-quality solution to
the problem is obtained with high probability. A pair
of such operators is commonly referred to as one QAOA
“layer.” The state is evolved with a diagonal Hamiltonian
encoding the optimization problem by the first operator
and with a non-diagonal transverse-field Hamiltonian by
the second operator. In this work, we consider the evo-
lution times to be hyperparameters that are set by using
a fixed, predetermined rule, analogously to the choice of
a schedule in simulated annealing.

While QAOA has been studied extensively,9–12 little
is known about its potential to provide a scaling advan-
tage over classical solvers. A recent numerical study11

of random k-SAT with N ≤ 20 variables has shown that
the time-to-solution (TTS) of QAOA with fixed param-

eters and constant depth grows as 1.23N . When QAOA
is combined with amplitude amplification, the quantum
TTS grows as 1.11N ,11 whereas the best classical heuris-
tic has TTS that grows as 1.25N .11 Our work is moti-
vated by this preliminary numerical evidence on small
instances, which indicates that QAOA may potentially
scale better than classical solvers when executed on an
idealized quantum computer.
We study the scaling of QAOA TTS with the prob-

lem size on the Low Autocorrelation Binary Sequences
(LABS) problem,13,14 also known as the Bernasconi
model in statistical physics.15,16 The LABS problem
has applications in communications engineering, where
the low autocorrelation sequences are used for designing
radar pulses.13,17 To solve LABS, one has to produce a
sequence of N bits that minimizes a specific quartic ob-
jective.
We choose LABS to study the scaling of QAOA TTS

for the following three reasons. First, the complexity
of LABS grows rapidly, with optimal solutions known
only for N ≤ 66 and the best heuristics producing
approximate solutions of quality decaying with N for
N ⪆ 200.18,19 This makes it a promising candidate prob-
lem, since only a few hundred qubits are required to
tackle classically intractable instances. Second, the per-
formance of classical solvers for LABS has been bench-
marked18,19 in terms of the scaling of their TTS with
problem size. We reproduce these results and observe
that that the scaling of classical solvers at N ≤ 40
matches the behavior at large N reported in the litera-
ture. This provides evidence that the scaling we observe

ar
X

iv
:2

30
8.

02
34

2v
1

 [
qu

an
t-

ph
]

 4
 A

ug
 2

02
3

2

for QAOA at N ≤ 40 will similarly extrapolate to large
N . Third, LABS has only one instance per problem size
N . Combined with the hardness of LABS, this makes it
possible to reliably study the scaling of QAOA at large
problem sizes, where simulating tens or hundreds of ran-
dom instances would be computationally infeasible.

We obtain the scaling by performing noiseless exact
simulation of QAOA with fixed schedules. Our results are
enabled by a custom algorithm-specific GPU simulator,20

which we execute using up to 1,024 GPUs per simula-
tion on the Polaris supercomputer accessed through the
Argonne Leadership Computing Facility. We find that
the TTS of QAOA with number of layers p = 12 grows
as 1.46N , which is improved to 1.21N if combined with
quantum minimum-finding. This scaling is better than
that of the best classical heuristic, which has a TTS that
grows as 1.34N . We note that QAOA is a general quan-
tum optimization heuristic with broad applicability, and
no specific modifications have been done to adapt it to
the LABS problem.

Our numerical evidence indicates that the proposed
quantum algorithm scales better than the best classical
heuristic in an idealized setting. However, we do not
claim that QAOA is the best theoretically possible algo-
rithm for the LABS problem. In particular, it may be
possible to quadratically accelerate the best-known clas-
sical heuristic (Memetic Tabu21) by applying ideas simi-
lar to those used in quantum simulated annealing.3,22,23

Nonetheless, our results highlight the potential of QAOA
to act as a useful algorithmic component that enables
super-Grover quantum speedups.

As a first step toward execution of QAOA for the LABS
problem, we implement QAOA on Quantinuum trapped-
ion quantum processors24,25 on problems with up to
N = 18. We further implement an algorithm-specific
error detection scheme inspired by Pauli error detec-
tion26,27 and demonstrate that it can reduce the impact
of noise on solution quality by up to 65%. Our exper-
iments highlight the continuing improvements to quan-
tum computing hardware and the potential of algorithm-
specific techniques to reduce the overhead of error detec-
tion and correction.

PROBLEM STATEMENT

We begin by formally defining the LABS problem, dis-
cussing the state of the art of classical LABS solvers, and
describing how QAOA is applied to solve the problem.

For a given sequence of spins si ∈ {±1}, the autocor-
relation is given as

Ak(s) =
N−k∑

i=1

sisi+k. (1)

The goal of the LABS problem is to find a sequence of

spins that minimizes the so-called “sidelobe” energy,

Esidelobe(s) =
N−1∑

k=1

A2
k(s), (2)

or, equivalently, maximizes the merit factor

F(s) =
N2

2Esidelobe(s)
. (3)

The time-to-solution (TTS) is defined as the time a solver
takes to produce this sequence. The energy Esidelobe(s)
is a polynomial containing terms of degree 2 and 4, vi-
sualized in Fig. 1a. It can be encoded on qubits by the
following Hamiltonian:

HC = 2

N−3∑

i=1

zi

⌊N−i−1
2 ⌋∑

t=1

N−i−t∑

k=t+1

zi+tzi+kzi+k+t

+
N−2∑

i=1

zi

⌊N−i
2 ⌋∑

k=1

zi+2k,

(4)

where zj is a Pauli z operator acting on qubit j.
The runtimes of state-of-the-art classical solvers for the

LABS problem scale exponentially, with clear exponen-
tial scaling present at N ≤ 40 as shown in Fig. 1b. The
best-known exact solvers are branch-and-bound methods
that have a running time that scales as 1.73N .19 The best-
known heuristic for general LABS is tabu search initial-
ized with a memetic algorithm (Memetic Tabu)21, and
has a running time that scales as 1.34N .28

To see why LABS is harder to solve than other com-
monly studied problems such as MaxCut, we can exam-
ine the correlation between the Hamming distance to the
optimal solution and the objective. The comparison is
shown in Fig. 1c. This correlation is one example of
problem structure used by both classical and quantum
heuristics to solve the problem quickly.7 The absence of
this correlation highlights the hardness of LABS com-
pared with other commonly considered problems such as
MaxCut.
As a consequence of the exponential scaling, the

LABS problem becomes classically intractable at moder-
ate sizes. Specifically, the value of the best-known merit
factor decreases significantly for high N , whereas the
asymptotic limit predicts that the merit factor should
stay approximately constant.29 This failure of state-of-
the-art heuristics has been observed for N > 200.18,19

The clear failure of the classical method to obtain high-
quality solutions even at small sizes makes LABS an
appealing candidate problem for quantum optimization
heuristics.29

In this work, we tackle the LABS problem using
QAOA. As shown in the circuit diagram Fig. 1d, QAOA
solves optimization problems by preparing a parameter-
ized state

|β,γ⟩ =
p∏

l=1

e−iβl

∑N
j=1 xje−iγlHC |+⟩⊗N , (5)

3

10 20 30 40 50
N

10°1

101

103

105

Ti
m

e
(s

ec
on

ds
)

103

105

107

109

N
um

be
ro

fc
al

ls

Branch&Bound
Fit: 1.615N

Tabu search
Fit: 1.354N

a b

0.0 0.2 0.4 0.6
Correlation of Hamming distance and objective

0

10

20

30

D
en

si
ty

LABS
MaxCut

d
+ !

. . .

+ "

+ #

+ $

+ % M

	"!(β")

	"!(β")

	"!(β")

	"!(β")

	"!(β")

	#
& !
& "
(%
!)

! !
#!
$!
%!
&(
"
)

Phase operator

	# &
!&
#(%

!)
	# &

$&
%(%

!)

! !
$!
%!
&!
'(
"
)

! !
#!
$!
&!
'(
"
)

	#
& #
& "
(%
!)

×' layersMixing operator

0.0 0.2 0.4 0.6
Correlation of Hamming distance and objective

0

10

20

30

D
en

si
ty

LABS
MaxCut

c

FIG. 1. Classical and quantum algorithms applied to the LABS problem. a, Diagram of the LABS problem (with
example of N = 5). The problem involves non-local two-body (black lines) and four-body (blue lines) interactions. b, Time-
to-solution (TTS) of classical solvers. For the sizes considered, we observe clear exponential scaling with exponents matching
their asymptotic values reported in the literature (see Table I). c, The distribution over 21 ≤ N ≤ 31 (for LABS) and 34
random instances (for MaxCut on random 3-regular graphs with 20 nodes) of Pearson product-moment correlation coefficients
relating the Hamming distance of bitstrings from the optimal solution with the objective value of the bitstring. LABS has a
much lower correlation between the Hamming distance and objective, indicating that it is much harder than the commonly
considered MaxCut problem. d, Diagram of QAOA circuit for a 5-qubit example. Starting from a uniform superposition of the
computational basis states, we apply p layers of phase and mixing operators, followed by measurement in the computational
basis.

where |+⟩⊗N is a uniform superposition over computa-
tional basis states, HC is the diagonal Hamiltonian en-
coding the problem, and xj is a Pauli x operator acting
on qubit j. The operator e−iγHC is commonly referred

to as the phase operator and e−iβ
∑N

j=1 xj as the mixing
operator. The evolution times β,γ are hyperparame-
ters chosen to maximize some figure of merit, such as
the expected quality of the measurement outcomes or
the probability of measuring the optimal solution. While
β,γ can be optimized independently for each problem
size, we consider them to be hyperparameters and use
one fixed set of parameters for the LABS problem with
a given QAOA depth p regardless of size. The fixed set
of parameters is obtained by optimizing β,γ numerically
for a number of small problem sizes and introducing an
averaging and rescaling procedure to extrapolate param-
eters to any problem size (see the Methods section).

When choosing the parameters β,γ and evaluating the
quality of the solution obtained by QAOA, two figures
of merit are commonly considered. The first one is the
expected merit factor of the sampled binary strings, given
by

⟨C⟩MF = ⟨β,γ| N
2

2HC
|β,γ⟩ =

∑

s∈{0,1}N

Pr(s)F(s). (6)

We will refer to ⟨C⟩MF as the “QAOA energy” as a short-

hand. The second figure of merit is the probability of
sampling the exact optimal solution, denoted by popt and
equal to the sum of squared absolute values of amplitudes
of basis states corresponding to exactly optimal solutions.

In the numerical experiments below, we follow the pro-
tocol of Ref. 11 and focus on scaling of the QAOA TTS
with problem size N as the QAOA depth p is held con-
stant. QAOA TTS is defined as 1

popt , i.e. the expected

number of measurements required to obtain an optimal
solution from the QAOA state. Ref. 11 rigorously shows
that, for random k-SAT, the runtime of constant-depth
QAOA grows exponentially with N at any fixed p, with
the scaling exponent depending on p. While the nature of
the LABS problem makes it difficult to obtain analytical
results analogous to Ref. 11, our numerical results also
show clear exponential scaling of TTS. We note that, in
practice, TTS of QAOA is Θ(N2) 1

popt , where the Θ(N2)

prefactor comes from the cost of implementing the LABS
phase oracle.30 However, we do not include it in our anal-
ysis because it does not affect the scaling exponent.

4

0 10 20 30
p

1.5

1.6

1.7

Sc
al

in
g

ex
po

ne
nt

0 10 20 30
p

0.7

0.8

0.9

1.0
Q

ua
lit

y
of

re
gr

es
si

on
fit

(R
2)

Range for the fit: Nmin ∑ N ∑ 39

Nmin
20
21

22
23

24
25

26
27

28
29

0 50 100 150 200
Energy level index

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ili

ty

0 20
0.00

0.05

QAOA p = 40

popt

MF
Uniform

28 30 32 34 36 38 40
N

103

104

105

T
T

S

QAOA p = 12
Fit: 1.461N

0 10 20 30
p

1.5

1.6

1.7

Sc
al

in
g

ex
po

ne
nt

0 10 20 30
p

0.90

0.92

0.94

0.96

0.98

Q
ua

lit
y

of
re

gr
es

si
on

fit
(R

2)

Range for the fit
27 ∑ N ∑ 39
28 ∑ N ∑ 39

a b c

e f

1 3 5 7 9 11 13
p

100

101

102

103

G
ai

n
in

po
pt

N
28
29

30
31

32
33

34
35

36
37

38
39

40
AA

d

1 5 10 15 20 25 30
p

0.00

0.05

0.10

0.15

0.20
QAOA parameters

b g MF popt

°0.5 0.0 0.5 1.0 1.5
t

2

3

4

hC
i M

F

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

po
pt

FIG. 2. QAOA runtime scaling and dynamics under different parameter schedules. a, The quality of the exponential
fit for different choices of minimumN to include in the fit. N ≥ 28 results in a robust fit, the quality of which does not deteriorate
with p. N = 40 is omitted as it was only simulated up to p = 22. b, TTS of QAOA at p = 12. Clear exponential scaling
is observed. c, The scaling exponent of QAOA runtime for different QAOA depths p. Shaded area shows 95% confidence
interval. Increasing p beyond p ≈ 12 does not lead to better scaling. d, The gain in success probability popt from applying
step p of QAOA and amplitude amplification (AA). The gain is defined as poptat step p/p

opt
at step (p−1). The gain at p = 1 is over

the random guess. Only one line is plotted for amplitude amplification since the lines for the values of N considered are
visually indistinguishable. For small p, a QAOA layer gives orders of magnitude larger gain than a step of AA. e, Fixed
QAOA parameters for p = 30 chosen with respect to the QAOA energy ⟨C⟩MF (“MF”) and probability of sampling the optimal
solution (“popt”). Different choice of optimization objective gives different resulting parameters. f. Probability of obtaining
a binary string corresponding to a given energy level of the LABS problem (the zeroth energy level is the ground state or
optimal solution; lower is better). When parameters are optimized with respect to the expected merit factor (labeled “MF”),
the QAOA output state is concentrated around the mean and fails to obtain a high overlap with the ground state. On the
other hand, when parameters are optimized with respect to popt (labeled “popt”), the QAOA state has a high overlap with both
the ground state and higher energy states. The probability of obtaining the ground state is 27.3 times greater for QAOA with
parameters optimized with respect to popt at p = 40.

SCALING OF QUANTUM TIME-TO-SOLUTION
FOR LABS PROBLEM

We now present the numerical results demonstrating
the scaling of TTS of QAOA and QAOA augmented
with quantum minimum-finding (“QAOA+QMF”). The
results are summarized in Table I. Throughout this sec-
tion, we present the numerical results obtained using ex-
act noiseless simulations. The runtime scaling is obtained
by evaluating QAOA once with fixed parameters β,γ
(i.e., with no overhead of parameter optimization) and
computing the value popt with high precision. We dis-
cuss the parameter setting procedure and the details of
simulation in the Methods section.

We are interested in the scaling of the runtime of
QAOA for large problem sizes N . An important ques-
tion to address is the choice of the smallest N to include
in the scaling analysis, since the algorithm’s behavior at
small sizes may not be predictive of its behavior at large
sizes. Note that the largest N we include is limited by the
capability of the classical simulator. We use the quality
of the fit as the criterion for the choice of the cutoff on

N . Figure 2a shows that if we set the cutoff at N ≥ 28,
we obtain a robust high-quality fit (R2 > 0.94), with
the quality of the fit remaining stable as p grows. On
the other hand, if smaller N are included, the quality
of fit begins to decay with p. Therefore we include only
N ≥ 28, obtaining the fit presented in Fig. 2b. We ob-
serve that TTS of QAOA grows as 1.46N with problem
size at constant QAOA depth p = 12. We present ev-
idence that the scaling exponent for QAOA at p = 12
is not sensitive to the choice of Nmin in Supplementary
Information.29

As a quantum optimization heuristic with constant
depth, on a fault-tolerant quantum computer the QAOA
performance can be improved by using amplitude am-
plification11,30 or, more specifically, quantum minimum-
finding31 (see Methods). The resulting scaling of TTS
of QAOA augmented with quantum minimum-finding
(“QAOA+QMF”) is 1.21N .

We observe that, beyond a certain value (p ≈ 12), in-
creasing QAOA depth does not lead to better scaling of
TTS. This behavior is demonstrated in Fig. 2c. Con-
sequently, running QAOA with p higher than 12 does

5

QAOA+QMF QAOA
Memetic Tabu Branch-and-bound

Reproduced 21,28 Reproduced
TTO19

TTS TTO

Fit 1.21 1.46 1.35 1.34 1.62 1.76 1.73

CI (1.19, 1.23) (1.42,1.50) (1.33,1.38) N/A (1.57,1.66) (1.72,1.79) N/A

TABLE I. Scaling exponents for quantum and classical algorithms. Confidence intervals (CIs) are 95%. The reported asymptotic
exponential scaling of classical state-of-the-art solvers is reproduced at N ≤ 40. For branch-and-bound, we include both the
time to obtain a certificate of optimality (TTO reported in Ref. 19) as well as the much shorter time to find an optimal solution
(TTS). We observe that QAOA with constant depth of p = 12 augmented with quantum minimum-finding (“QAOA+QMF”)
has better time-to-solution scaling than the best known classical heuristics.

not give any scaling advantage over amplitude amplifi-
cation. This behavior is illustrated in Fig. 2d, which
shows the increase in the success probability popt from
applying a given step of QAOA and amplitude amplifi-
cation. For amplitude amplification, at step p we have

popt =
(
sin((2p+ 1) arcsin

√
p0)

)2
, where p0 = 8

2N
is

the initial (random guess) success probability.32 Note
that the 8 in the numerator is a consequence of a di-
hedral group symmetry, namely, D4. While asymptoti-
cally equivalent, amplitude amplification performs bet-
ter than a realistic generalized minimum-finding algo-
rithm,31 as the formula used here considers the scenario
where we know which states to amplify (i.e., the optimal
merit factor is known). We observe that for small p, a
step (layer) of QAOA gives orders of magnitude larger
increase in success probability than does a step of ampli-
tude amplification, implying an even larger improvement
over direct application of quantum minimum-finding. We
provide additional details on comparison between QAOA
and amplitude amplification in the Supplementary Infor-
mation.29

We observe that the QAOA dynamics with parameters
optimized for expected solution quality ⟨C⟩MF and suc-
cess probability popt are different. We plot the optimized
parameters in Fig. 2e. We note that the parameters
optimized with respect to one metric give performance
that is far from optimal with respect to the other metric.
This can be seen in Fig. 2f, which plots the energy dis-
tribution (with respect to the cost Hamiltonian) of the
states appearing in the QAOA wavefunction weighted by
probability. With the parameters optimized for ⟨C⟩MF,
the QAOA output distribution is concentrated around its
mean, and the overlap with the ground state or popt is
very small. On the other hand, when the parameters are
optimized with respect to popt, the wavefunction is not
concentrated and has large probability weight on the tar-
get ground state (i.e., high popt). This comes at the cost
of significant overlap with high-energy states, which leads
to poor expected solution quality. In the Supplementary
Information29, we discuss the behavior of QAOA with pa-
rameters optimized with respect to different objectives.

EXPERIMENTS ON TRAPPED-ION SYSTEM

We now present the experimental results demonstrat-
ing the algorithmic and hardware progress toward the
practical implementation of QAOA. Implementation of
the phase operator is especially challenging for currently
available quantum processors. It requires a large num-
ber of geometrically nonlocal two-qubit gates, demanding
high gate fidelity.

Recent progress in trapped-ion platforms based on the
QCCD architecture24,25,29 has led to a rapid increase
in the number of qubits while maintaining high fidelity,
enabling large-scale QAOA demonstrations.33,34 These
systems implement two-qubit gates between arbitrary
pairs of qubits by transporting ions into physically sepa-
rate gate zones, resulting in high-fidelity two-qubit gates
with low crosstalk. We leverage this progress to execute
QAOA circuits for the LABS problem on Quantinuum
H-series trapped-ion systems.

To implement the QAOA circuit shown in Fig. 1d, we
have to implement the phase operator. The four-body
terms in the phase operator are decomposed into cnot

gates and the native Rzz(θ) = e−i θ
2 zz rotation as shown in

Fig. 3a. To reduce the cost of implementing both the two-
qubit and four-qubit interaction terms, we optimize the
circuit by greedily canceling cnot gates (for algorithm
details and gate count reduction see the Supplementary
Information29). The resulting circuit containing cnots
and Rzzs is then transpiled into the two-qubit Rzz gates
and single-qubit gates that can be natively implemented
by the trapped-ion system.29 We remark that the number
of two-qubit gates is ≈ 103 at N = 18, putting our exper-
iments among the largest quantum optimization demon-
strations on quantum hardware to date.33–37

In this work we execute QAOA circuits with p = 1
using parameters β, γ optimized in noiseless simulation,
followed by a projective measurement in the computa-
tional basis. In Fig. 3b, we show the energy probabil-
ity distribution of measured bitstrings for N = 13. We
observe a broad distribution due to the limited number
of layers and experimental imperfections. Nevertheless,
even at high N , where two-qubit gate count is high and
the gate errors can be significant, we observe a clear sig-
nal that indicates that QAOA is outperforming random
guess. This is shown in Fig. 3c, which presents the ex-

6

a

d
+ !

…

!!
"#
!
∑

% "
"$
!

+ "

+ #

+ $

M

An
cil

la
e

Da
ta

 q
ub

its

	#

	#

	#0

0 	#

. . .

⊗

⊗

⊗

⊗

!!
"&
!'

%

⊗

⊗
⊗

⊗

	
	

100 101 102

Energy Index

0.000

0.025

0.050

0.075

0.100

Pr
ob

ab
ili

ty

Noiseless
H1-1
Random

8 10 12 14 16 18
N

1.2

1.4

1.6

1.8

2.0

2.2

hC
i M

F

Noiseless Random H1-1
b c

10 12 14 16 18
N

1.2

1.4

1.6

1.8

2.0

2.2

2.4

hC
i M

F

Noiseless
Random

H1-1 (Fig 3c)
H1-1 (ED)

H2 (ED)
e

FIG. 3. Experimental results on trapped-ion system. a, Decomposition of four-body interaction terms into a two-body
Rzz gate and four two-body cnot gates, which can be realized via native Rzz gates. b, Energy density plot from experimental
measured bitstrings for N=13. Energy index is arranged in energy ascending order. As a comparison, the distributions for
noiseless p = 1 QAOA simulation and random guess (assuming uniform distribution of all possible bitstrings) are shown. c,
Experimental results up to 18 qubits on a trapped-ion quantum device (H1-1) with QAOA layer p = 1 with optimized QAOA
parameters. The error bars are calculated with 99% confidence intervals hereafter. d, Illustration of parity check circuit. The
z and x parities of states are mapped to ancillary qubits after implementation of full (or part of) phase operators via cz and
cnot gates, respectively, followed by mid-circuit measurement on the ancillary qubits to extract the parity syndrome result.
e, Experimental results for circuit with parity check. Three mid-circuit z-parity and x-parity checks were performed using six
ancillary qubits. The ancillae can also be reused after appropriate reset during the circuit. The red data points were run on the
Quantinuum H2 hardware while the blue data were from the H1-1 device. Data run on the H1-1 device without any ancillary
qubits are shown in grey. Circles (diamonds) are the data without (with) post-selection. The abbreviation ED refers to the
error detection via the parity checks. Number of mid-circuit parity checks is fixed to be two for N = 10, 11 and three for all
other N . Improvement in expected merit factor after post-selection according to parity syndrome measurement is observed.

perimentally obtained expected merit factors for various
problem size up to N = 18. We note that the merit
factor drops quickly for larger N and is approaching ran-
dom guess because of experimental imperfections. We
also note that at this scale LABS is easy for classical
heuristics, which obtain optimal merit factors in < 1 sec-
ond.29 Implementing QAOA for LABS instances that are
hard for classical solvers would likely require error correc-
tion as the current implementation leads to an estimated
two-qubit gate count of ≈ 7.5 × 105 already at N = 67
and p = 12.29

To improve the performance in the presence of
noise, we implement an algorithm-specific error detec-
tion scheme. Since only the phase operator requires two-
qubit gates, we focus on detecting errors that occur in
the corresponding part of the circuit. Our scheme is
based on the Pauli sandwiching error-detecting proce-
dure of Ref. 26, which uses pairs of parity checks to de-
tect some but not necessarily all errors that occur in a
given part of the circuit. Following Refs. 38 and 39, we
use the symmetries of the optimization problem to con-
struct the parity checks. Specifically, we note that the

LABS Hamiltonian preserves both z and x parities, that
is, [HC ,⊗N

i zi] = [HC ,⊗N
i xi] = 0. We compute the par-

ities onto ancillary qubits and perform mid-circuit mea-
surement to determine whether an odd number of z- or
x-flip errors occur during the circuit execution. The cir-
cuit with one check is shown in Fig. 3d. In the hardware
experiments shown in Fig. 3e, we use up to three parity
checks and observe consistent improvements in QAOA
performance after postselecting on their outcomes. Af-
ter postselection, the difference of merit factor between
experimental results and noiseless simulation is reduced
by 54% on average and up to 65% for specific N . In
the Supplementary Information29 we present additional
details on the error-detecting scheme performance, in-
cluding how performance improves with the number of
parity checks and the reduction in the algorithm runtime.
We note that while error detection does not directly give
samples with better merit factors, the potential improve-
ment in runtime can be translated into performance gains
at the algorithm level, for example by being able to take
more samples within a given time budget.29 In our exper-
iments, in all but two cases the optimal bitstring could

7

be found within the post-selected sample, and in all cases
within the total sample.29

DISCUSSION

Our main finding is that quantum minimum-finding
enhanced with QAOA scales better than the best known
classical heuristics for the LABS problem. This provides
evidence for the potential of QAOA to act as a building
block that provides algorithmic speedups on an idealized
fault-tolerant quantum computer. We envision QAOA
being used in a variety of algorithmic settings, similarly
to how amplitude amplification acts as a subroutine in
quantum algorithms for backtracking, branch-and-bound
and so on.

We take the first step toward the execution of QAOA
for the LABS problem by implementing an algorithm-
specific error-detection scheme on a trapped-ion quantum
processor. However, further improvements in quantum
error correction and hardware are necessary to implement
the quantum minimum-finding augmented with QAOA.
In particular, the overheads of fault-tolerance40 must be
significantly reduced to realize the quantum speedup.

METHODS

Quantum minimum-finding enhanced with QAOA

In this work, we present the scaling results for
QAOA combined with amplitude amplification (AA),
or, more specifically, with quantum minimum-finding
(“QAOA+QMF” in Table I). This reduces the scaling ex-
ponent by half as compared to directly sampling QAOA
output. We now discuss in detail how QAOA is com-
bined with the generalized quantum minimum-finding al-
gorithm of Ref. 31 to obtain the stated scaling.

We begin by noting that standard AA is not sufficient.
This is because the LABS problem is framed as optimiza-
tion and not search, i.e. there is no oracle for marking
a global minimum. The trick for handling optimization
is to perform a standard reduction from optimization to
feasibility. The reduction is performed by introducing
a threshold on the cost as a constraint and performing
a binary search using AA as a subroutine. The oracle
used by AA marks the elements below the current thresh-
old. This reduction was first introduced by Dürr and
Høyer (DH).1 However, the quantum minimum-finding
algorithm of Dürr and Høyer utilizes standard Grover
search, i.e. it requires the initial state to be the uniform
superposition. A modification to it is required to leverage
the improved success probability afforded by QAOA.

Ref. 31 provided a simple extension of DH that al-
lows arbitrary initial states, with the overall cost scal-
ing inversely with overlap between the initial state and
state encoding the optimal solution. We leverage this

extension in our quantum algorithm. We use constant-
depth QAOA to prepare the initial state for the quantum
minimum-finding algorithm. As QAOA state has over-
lap with the optimal state that is much larger than that
of uniform superposition29 and scales more favorably,
we obtain better performance than the direct minimum-
finding of Dürr and Høyer. Specifically, we provide nu-
merical evidence that our algorithm obtains a super-
Grover speedup over exhaustive search for the LABS
problem, and scales better than the best known classical
heuristics. We present our modification to include QAOA
for outputting an optimal solution x∗ to the LABS prob-
lem in Algorithm 1 below. It is based on the general-
ized minimum-finding procedure outlined in Lemma 48
of Ref. 31. To keep the current work self-contained, we in-
clude the analysis of the algorithm below. We will use the
following standard quantum subroutine based on Grover
search that searches for an element with unknown prob-
ability in a quantum state.

Lemma 1 (Exponential Quantum Search, Ref. 41). Let
|ψ⟩ = U |0⟩⊗N be a quantum state in a 2N -dimensional
Hilbert space with computational basis elements indexed
by N -bit bitstrings, and m : {0, 1}N → {0, 1} be a mark-
ing function such that

∑
{x|m(x)=1} |⟨ψ|x⟩|2 ≥ p. There

exists a quantum algorithm EQSearch(U,m, δ) that out-
puts an element x∗ such that m(x∗) = 1 with probability

at least δ using O
(

1√
p log

(
1
δ

))
applications of U and m.

Algorithm 1 QAOA Enhanced with Quantum
Minimum-Finding

Require: Unitary UQAOA acting on C2N such that
|⟨x∗|UQAOA|0⟩⊗N | ≥ 1/

√
popt for unknown popt, VLABS for

computing Esidelobe into a register, and δ ∈ (0, 1), positive
number M ≤ 2N , C is the constant corresponding to the
O(·) in Lemma 1

Ensure: IfM is greater than 1/
√
popt, output x

∗ with ≥ 1−δ
probability using O(log(1/δ)M) calls to UQAOA and VLABS

(and their inverses).
xres is set to an empty list.
for i← 1 to ⌈log(1/δ)⌉ do

t← 0; s0 ←∞
while number of calls to UQAOA & VLABS is < 3CMN

do
t← t+ 1
Define mt : {0, 1}N → {0, 1} such that mt(x) = 1

if and only if Esidelobe(x) < st−1. Note that mt can be
coherently evaluated using one query to VLABS.

Set st = EQSearch(UQAOA,mt, 1/(6 · 2N)).
end while
Append st to xres.

end for
Output minimum of xres.

Theorem 1. Suppose a constant-depth QAOA circuit
UQAOA prepares a state |ψ⟩ = UQAOA|0⟩⊗N with N ≥
3, such that we have |⟨x∗|ψ⟩| ≥ 1/

√
popt, where |x∗⟩

8

b

1 5 10 15 20
p

0.00

0.05

0.10

0.15

0.20
b,

g N
24
25

26
27

28
29

30
31

a

1 5 10 15 20
p

0.05

0.10

0.15

0.20

Mean parameters
b
g

FIG. 4. Visualization of how the fixed parameters are obtained. a, Optimized QAOA parameters β (top lines) and γ
(bottom lines) for p = 21. γ is multiplied by N/24 (constant factor of 1

24
added for figure readability in both subfigures). b,

Fixed parameters obtained by taking the arithmetic mean over the optimized parameters.

encodes an optimal solution to the N -bit LABS prob-
lem in a computational basis state, and we assume that
popt ≥ 1/N . Then, running Algorithm 1 with parame-
ters M ≥ 1/

√
popt and failure probability δ, runs with

a gate complexity of O(poly(N) log(1/δ)M) and finds x∗

with probability at least 1− δ.

Proof. See Supplementary Information.29

Choice of QAOA parameters β, γ

Our strategy for setting the QAOA parameters β, γ
used in our experiments is twofold. First, we optimize
QAOA parameters for smallN using the FOURIER repa-
rameterization scheme of Ref. 9. Second, we use the op-
timized parameters for small N to compute fixed QAOA
parameters that are then used for larger N . To apply the
fixed parameters to an instance with a given size N , we
rescale the parameters γ by N .29 We discuss the param-
eter optimization scheme and the parameter rescaling in
the Supplementary Information.29 We note that the re-
sults presented above can be improved if better parame-
ter setting strategies are used.

The procedure for obtaining the set of fixed QAOA pa-
rameters is visualized in Fig. 4. Specifically, we optimize
QAOA parameters for a set of small instances with sizes
{Nj}Mj=1 attainable in simulation and set the fixed pa-
rameters to be the mean over the optimized parameters:

βFixed =
1

M

M∑

j=1

β∗
Nj
, (7)

γFixed =
1

M

M∑

j=1

Njγ
∗
Nj
, (8)

where β∗
Nj

, γ∗
Nj

are the QAOA parameters optimized for

the LABS instance of size Nj and M is the number of
optimized instances. Then the parameters used in QAOA

for size N are given by βFixed, γ
Fixed

N . We use 24 ≤ Nj ≤
31 (M = 8).

Error detection by symmetry verification

The error detection scheme relies on the symmetry of
phase operator defined by Eq. 2. As it commutes with
both ⊗N

i zi and ⊗N
i xi operators, one can measure the

value of these operators and perform postselection on
the measurement outcomes. That is, the state after the
phase operator should have the same z and x parity as
before it. In the presence of an odd number of bit flip or
phase flip errors that occur during the implementation of
phase operators, the resulting state will not be in the +1
eigenspace of the two syndrome operators.

Experimentally, we divide the whole phase operator
into m splits such that each split has approximately
the same number of two-qubit gates, and we perform
syndrome checks at the end of each split to detect er-
rors. The syndrome operators are mapped to ancillary
qubits via sequential controlled-x or controlled-z gates
and Hadamard gates applied before and after the par-
tial phase operator. Since the number of two-qubit gates
for the phase operators is higher than the number of
gates used for the mapping by 2–3 orders of magnitude,
additional errors introduced by ancillae are negligible.
Furthermore, the crosstalk error probability during mid-
circuit measurements is on the order of 10−5, consider-
ably lower than the typical two-qubit-gate infidelity of
2× 10−3 for the trapped-ion systems we used.25 As a re-
sult, our error detection scheme leads to large improve-
ments in QAOA performance on hardware at the cost
of the number of repetitions growing exponentially with
the number of checks.26 We note that the performance
of the error detection scheme can be further improved
by implementing parity checks using fault-tolerant con-
structions.42

9

Scaling of classical solvers

All scaling coefficients are obtained by fitting a least-
squares linear regression on the logarithm of TTS. The
confidence intervals on the scaling coefficients are ob-
tained by using the Student’s t-distribution and are re-
ported with 95% confidence.

We use commercial state-of-the-art branch-and-bound
solvers in numerical experiments. Figure 1b and Table I
show results obtained using Gurobi,43 although we ob-
tain similar results for CPLEX44 (see the Supplementary
Information). The use of commercial branch-and-bound
solvers is motivated by the observation that their scaling
closely matches that reported in Ref. 19. Specifically, we
observe that for both solvers the time to produce a certifi-
cate of optimality (TTO) scales with an exponent within
a 95% confidence interval of the 1.73 exponent reported
in Ref. 19. We note that unlike the solver presented in
Ref. 19, commercial solvers are not parallelizable and can
take advantage of only one CPU with at most tens of
cores. Since QAOA is a heuristic and does not guar-
antee optimality, we additionally run branch-and-bound
solvers until a solution with an exactly optimal merit
factor is found, at which point the execution is stopped.
The resulting TTS scales more favorably: for Gurobi,
the scaling is 1.615N , with a 95% confidence interval of
(1.571, 1.659). All the numbers reported correspond to
the mean CPU time, with the mean taken over 100 ran-
dom seeds for N ≤ 32 and 10 random seeds for N > 32.
We present additional details of classical solver bench-
marking in the Supplementary Information.29

Branch-and-bound algorithms are the best-known ex-
act solvers for the LABS problem. In the regime where
proving optimality is out of reach and the goal is simply
to efficiently obtain sequences with high merit factors,
heuristic algorithms are preferable. The best runtimes
and runtime scaling reported in the literature21 are from
an algorithm known as Memetic Tabu. Memetic Tabu is
a memetic algorithm, that is, an evolutionary algorithm
augmented by local search. Specifically, an evolutionary
algorithm is used to find initializations for tabu search, a
metaheuristic that augments local neighborhood search
with a data structure (known as the tabu list) that filters
possible local moves if the potential solutions have been
recently visited or diversification rules are violated.45 In
terms of the runtime required to find optimal solutions in
the regime where exact solutions have been found using
branch-and-bound methods,19 Memetic Tabu has been
observed to outperform both non-evolutionary methods
as well as memetic algorithms that use simpler neighbor-
hood search schemes such as steepest descent. To verify
the scaling of tabu search on the regime of interest for
comparison with QAOA, we use the implementation of
Memetic Tabu in Ref. 18. For each length, we average
the runtime over 50 random seeds, obtaining the scaling
of the time-to-solution of 1.35N with a 95% confidence in-
terval of (1.33, 1.38). This scaling closely matches the one
reported in Ref. 28. We also note that solvers based on

self-avoiding random walks18 have been shown to be com-
petitive with or outperform Memetic Tabu when the task
is to find skew-symmetric29 sequences with the lowest au-
tocorrelation. These solvers are specialized to search for
skew-symmetric sequences and do not naturally extend
to the unrestricted LABS problem.

High-performance simulation of QAOA

Our numerical results are enabled by a custom scal-
able high-performance algorithm-specific QAOA simula-
tor. We briefly describe the simulator here; for additional
details and benchmarks comparing the developed sim-
ulator with the state-of-the-art methods for simulating
QAOA the reader is referred to Ref. 20.
In this work, the main goal of the numerical simulation

of QAOA is to evaluate the expectation of the cost Hamil-
tonian ⟨C⟩MF and the success probability popt. Since
popt is exponentially small, it has to be evaluated with
high precision. While many techniques can be leveraged
for exact simulation, we opt to directly simulate the full
quantum state as it is propagated through the QAOA
circuit. We note in particular that tensor network tech-
niques do not provide a benefit in this case since the cir-
cuit we simulate is deep and fully connected (see Ref. 20
for detailed comparison).
First, we leverage the observation that the cost Hamil-

tonian and hence the phase-separation operator are diag-
onal. This allows us to precompute the cost function eval-
uated at every binary input and multiply the exponenti-
ated costs elementwise with the statevector to simulate
the application of the phase-separation operator. This
operation can be easily parallelized since it is an elemen-
twise operation local to each element in the statevector.
The same precomputed vector of cost function values is
used to compute ⟨C⟩MF by taking the inner product with
the final QAOA state. The cost of precomputation is
amortized over the large number of objective evaluations
performed during parameter optimization and is thereby
negligible.
Second, we note that the mixing operator consists of an

application of a uniform x rotation applied on each qubit.
Therefore, each rotation operation can be computed by
multiplying a fixed 2× 2 unitary matrix with a 2× 2n−1

matrix constructed from reshaping the statevector. This
step is parallelized by grouping the pairs of indices on
which the 2× 2 unitary is applied.
We perform the simulations on the Polaris supercom-

puter located in Argonne Leadership Computing Facility.
We distribute the simulation to 256 Polaris nodes with
four NVIDIA A100 GPUs on each node and one AMD
EPYC CPU. The CPU is used to manage the commu-
nication and the assembly of final results. Each GPU
hosts a chunk of the full statevector and a chunk of the
integer cost operator vector. Application of the cost op-
erator does not require any communication since it is
local to each element. The grouping in the mixing oper-

10

ator depends on index i of the operator xi analogous to
the grouping in the fast Walsh–Hadamard transform.46

For i ≤ n − log2(1024) = 29 the pairing is local within
each GPU. For i > 29 we use CUDA-enabled MPI to dis-
tribute full chunks between nodes, which requires space
to be reserved for two statevector chunks on each GPU.

AUTHOR CONTRIBUTIONS

R. Shaydulin devised the project. J. Larson, N. Ku-
mar, and R. Shaydulin implemented QAOA parame-
ter optimization and the parameter setting schemes.
R. Shaydulin and Y. Sun implemented the single-node
version of the QAOA simulator. D. Lykov implemented
the distributed version of the QAOA simulator and ex-
ecuted the large-scale simulations on Polaris. R. Shay-
dulin analyzed the simulation results. D. Herman and
S. Hu developed the circuit optimization pipeline. C. Li
implemented and analyzed the error detection scheme.
M. DeCross and D. Herman executed the experiments
on trapped-ion hardware, and C. Li analyzed the re-
sults. S. Chakrabarti, D. Lykov and P. Minssen bench-
marked classical solvers. S. Chakrabarti, D. Herman
and R. Shaydulin analyzed the generalized quantum
minimum-finding enhanced with QAOA. J. Dreiling, J.P.
Gaebler, T.M. Gatterman, J.A. Gerber, K. Gilmore, D.
Gresh, N. Hewitt, C.V. Horst, J. Johansen, M. Matheny,
T. Mengle, M. Mills, S.A. Moses, B. Neyenhuis, and P.

Siegfried built, optimized, and operated the trapped-ion
hardware. M. Pistoia led the overall project. All authors
contributed to technical discussions and the writing of
the manuscript.

ACKNOWLEDGMENTS

The authors thank their colleagues at the Global Tech-
nology Applied Research center of JPMorgan Chase for
support and helpful discussions. Special thanks are also
due to Tony Uttley and Jenni Strabley from Quantinuum
for their continued support throughout the project. This
material is based upon work supported in part by the
U.S. Department of Energy, Office of Science, under con-
tract number DE-AC02-06CH11357 and the Office of Sci-
ence, Office of Advanced Scientific Computing Research,
Accelerated Research for Quantum Computing program.

DATA AVAILABILITY

The data presented in this paper can be found at
https://doi.org/10.5281/zenodo.8190275.

CODE AVAILABILITY

The code used to produce the results in this paper
can be found at https://github.com/jpmorganchase/
QOKit.

∗ Corresponding author. Email:
ruslan.shaydulin@jpmchase.com

1 Christoph Dürr and Peter Høyer, arXiv:quant-ph/9607014
(1996).

2 S. Chakrabarti, P. Minssen, R. Yalovetzky, and M. Pistoia,
arXiv:2210.03210 (2022).

3 R. D. Somma, S. Boixo, H. Barnum, and E. Knill, Physical
Review Letters 101 (2008).

4 P. Wocjan and A. Abeyesinghe, Physical Review A 78
(2008).

5 M. B. Hastings, Quantum 2, 78 (2018).
6 A. M. Dalzell, N. Pancotti, E. T. Campbell, and F. G.
Brandão, in Proceedings of the ACM Symposium on Theory
of Computing (2023).

7 T. Hogg and D. Portnov, Information Sciences 128, 181
(2000).

8 E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028
(2014).

9 L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Physical Review X 10, 021067 (2020).

10 J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and
L. Zhou, Proceedings of the Conference on the Theory of
Quantum Computation, Communication and Cryptogra-
phy 7, 1 (2022).

11 S. Boulebnane and A. Montanaro, arXiv:2208.06909
(2022).

12 S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso,
S. Chakrabarti, Y. Sun, and M. Pistoia, arXiv:2305.15201
(2023).

13 A. Boehmer, IEEE Transactions on Information Theory
13, 156 (1967).

14 M. Schroeder, IEEE Transactions on Information Theory
16, 85 (1970).

15 J. Bernasconi, Journal de Physique 48, 559 (1987).
16 S. Mertens and C. Bessenrodt, Journal of Physics A: Math-

ematical and General 31, 3731 (1998).
17 M. Golay, IEEE Transactions on Information Theory 23,

43 (1977).
18 B. Bošković, F. Brglez, and J. Brest, “A GitHub Archive

for Solvers and Solutions of the LABS problem,” (2016).
19 T. Packebusch and S. Mertens, Journal of Physics A:

Mathematical and Theoretical 49, 165001 (2016).
20 D. Lykov, R. Shaydulin, Y. Sun, Y. Alexeev, and M. Pis-

toia, “Fast simulation of high-depth QAOA,” In prepara-
tion.

21 J. E. Gallardo, C. Cotta, and A. J. Fernández, Applied
Soft Computing 9, 1252 (2009).

22 J. Lemieux, B. Heim, D. Poulin, K. Svore, and M. Troyer,
Quantum 4, 287 (2020).

23 S. Boixo, G. Ortiz, and R. Somma, The European Physical
Journal Special Topics 224, 35 (2015).

11

24 J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler,
S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig,
D. Hayes, K. Mayer, C. Ryan-Anderson, and B. Neyen-
huis, Nature 592, 209 (2021).

25 S. A. Moses et al., arXiv:2305.03828 (2023).
26 A. Gonzales, R. Shaydulin, Z. H. Saleem, and M. Suchara,

Scientific Reports 13 (2023).
27 D. M. Debroy and K. R. Brown, Physical Review A 102

(2020).
28 B. Bošković, F. Brglez, and J. Brest, Applied Soft Com-

puting 56, 262 (2017).
29 Supplementary Information: Evidence of Scaling Advan-

tage for the Quantum Approximate Optimization Algo-
rithm on a Classically Intractable Problem.

30 Y. R. Sanders, D. W. Berry, P. C. Costa, L. W. Tessler,
N. Wiebe, C. Gidney, H. Neven, and R. Babbush, PRX
Quantum 1 (2020).

31 J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf,
Quantum 4, 230 (2020).

32 M. Boyer, G. Brassard, P. Høyer, and A. Tapp,
Fortschritte der Physik 46, 493 (1998).

33 R. Shaydulin and M. Pistoia, arXiv:2303.02064 (2023).
34 Z. He, R. Shaydulin, S. Chakrabarti, D. Herman, C. Li,

Y. Sun, and M. Pistoia, arXiv:2305.03857 (2023).
35 E. Pelofske, A. Bärtschi, J. Golden, and S. Eidenbenz,

arXiv:2306.03238 (2023).
36 E. Pelofske, A. Bärtschi, and S. Eidenbenz, in Lecture

Notes in Computer Science (Springer Nature Switzerland,
2023) pp. 240–258.

37 P. Niroula, R. Shaydulin, R. Yalovetzky, P. Minssen,
D. Herman, S. Hu, and M. Pistoia, Scientific Reports 12
(2022).

38 R. Shaydulin and A. Galda, in IEEE International Con-
ference on Quantum Computing and Engineering (2021).

39 A. Kakkar, J. Larson, A. Galda, and R. Shaydulin, in
IEEE International Conference on Quantum Computing
and Engineering (2022).

40 R. Babbush, J. R. McClean, M. Newman, C. Gidney,
S. Boixo, and H. Neven, PRX Quantum 2 (2021).

41 G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Contem-
porary Mathematics , 53 (2002).

42 C. N. Self, M. Benedetti, and D. Amaro, arXiv:2211.06703
(2022).

43 Gurobi Optimization, www.gurobi.com.

44 IBM ILOG CPLEX, International Business Machines Cor-
poration.

45 F. Glover and M. Laguna, Tabu Search (Kluwer Academic
Publishers, Norwell, MA, USA, 1997).

46 Fino and Algazi, IEEE Transactions on Computers C-25,
1142 (1976).

DISCLAIMER

This paper was prepared for informational purposes
with contributions from the Global Technology Applied
Research center of JPMorgan Chase & Co., Argonne Na-
tional Laboratory and Quantinuum LLC. This paper is
not a product of the Research Department of JPMorgan
Chase & Co. or its affiliates. Neither JPMorgan Chase &
Co. nor any of its affiliates makes any explicit or implied
representation or warranty and none of them accept any
liability in connection with this position paper, including,
without limitation, with respect to the completeness, ac-
curacy, or reliability of the information contained herein
and the potential Legal, compliance, tax, or accounting
effects thereof. This document is not intended as invest-
ment research or investment advice, or as a recommenda-
tion, offer, or solicitation for the purchase or sale of any
security, financial instrument, financial product or ser-
vice, or to be used in any way for evaluating the merits
of participating in any transaction.
The submitted manuscript includes contributions from

UChicago Argonne, LLC, Operator of Argonne National
Laboratory (“Argonne”). Argonne, a U.S. Department
of Energy Office of Science laboratory, is operated un-
der Contract No. DE-AC02-06CH11357. The U.S. Gov-
ernment retains for itself, and others acting on its be-
half, a paid-up nonexclusive, irrevocable worldwide li-
cense in said article to reproduce, prepare derivative
works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Gov-
ernment. The Department of Energy will provide pub-
lic access to these results of federally sponsored research
in accordance with the DOE Public Access Plan http:
//energy.gov/downloads/doe-public-access-plan.

Supplementary Information:
Evidence of Scaling Advantage for the Quantum Approximate
Optimization Algorithm on a Classically Intractable Problem

Ruslan Shaydulin,1, ∗ Changhao Li,1 Shouvanik Chakrabarti,1 Matthew DeCross,2 Dylan Herman,1

Niraj Kumar,1 Jeffrey Larson,3 Danylo Lykov,1, 4 Pierre Minssen,1 Yue Sun,1 Yuri Alexeev,4 Joan M. Dreiling,2

John P. Gaebler,2 Thomas M. Gatterman,2 Justin A. Gerber,2 Kevin Gilmore,2 Dan Gresh,2 Nathan Hewitt,2

Chandler V. Horst,2 Shaohan Hu,1 Jacob Johansen,2 Mitchell Matheny,2 Tanner Mengle,2 Michael Mills,2

Steven A. Moses,2 Brian Neyenhuis,2 Peter Siegfried,2 Romina Yalovetzky,1 and Marco Pistoia1

1Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA
2Quantinuum, Broomfield, CO 80021, USA

3Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
4Computational Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

CONTENTS

SI. Background on the LABS problem 2

SII. QAOA as an exact and approximate optimization algorithm 2

SIII. Details of numerical studies 5
A. Optimized QAOA parameters for LABS change with N 5
B. QAOA parameter optimization with FOURIER scheme 5
C. Evidence of the success of the FOURIER reparameterization heuristic 6
D. Procedure for obtaining the fixed parameters 6
E. Evidence of the success of the fixed parameter scheme 7
F. Scaling coefficient of QAOA TTS is not sensitive to the choice of Nmin 7
G. Scaling coefficient of QAOA TTS does not follow power law 8
H. Comparison of performance between QAOA and amplitude amplification 8
I. Proof of Theorem 1 10
J. Details of the classical solver scaling 12

SIV. Experiments on trapped-ion systems 13
A. Experimental system 13
B. Circuit compilation and optimization 14
C. Summary of the error-detection scheme 16
D. Performance of the error-detection scheme 17

References 18

ar
X

iv
:2

30
8.

02
34

2v
1

 [
qu

an
t-

ph
]

 4
 A

ug
 2

02
3

2

SI. BACKGROUND ON THE LABS PROBLEM

The problem of finding sequences with low sidelobe energies attracted attention in the 1960s and 1970s due to its
applications to the reduction of the peak power of radar pulses.1,2 The merit factor F was first introduced by Golay3

and defined as the ratio of central to sidelobe energy of a binary sequence. Improved merit factors were obtained
over the years by exhaustive4,5 and non-exhaustive6 search methods. Explicit sequences asymptotically achieving
the merit factor of F ≈ 6.34 are known.7 The conjectured asymptotic limit of F → 12.32 as N → ∞ was derived
using arguments from statistical mechanics in Ref. 8. Bernasconi reframed the LABS problem as a spin model with
long-range 4-spin interactions to apply simulated annealing to it.9 However, simulated annealing failed to obtain
high-quality solutions, with the failure attributed to the “golf-course type” energy landscape.9 Bernasconi further
conjectured that this property of the landscape will prevent stochastic search procedures from obtaining high-quality
solutions for long sequences.9 This conjecture has held up so far.

A commonly considered class of sequences are those exhibiting skew-symmetry, which for sequences of odd length
N = 2k−1 are defined as sk+l = (−1)lsk−l, l ∈ {1, . . . , k−1}. Skew-symmetric sequences are known to be optimal for

many odd N instances. Since skew-symmetry reduces the search space from 2N to 2
N
2 , only searching this subspace

leads to better runtime scaling. Therefore many algorithms are restricted to only searching this subspace. The best-
known heuristic for skew-symmetric LABS uses a sequence of self-avoiding walk segments when searching and has
a running time that scales as 1.15N .10 In this work, we target the general LABS problem and therefore we do not
consider solvers that are only capable of tackling the skew-symmetric instances.

SII. QAOA AS AN EXACT AND APPROXIMATE OPTIMIZATION ALGORITHM

We now provide additional numerical results highlighting the differences in QAOA behavior with parameters opti-
mized for approximate and exact solutions. In this work, we use QAOA as an exact solver, with time to solution as
the target metric. However, QAOA is typically used as an approximation algorithm,11 with most theoretical results
focusing on the expected solution quality obtained by QAOA. On the LABS problem, we observe that QAOA can
provide poor approximations in polynomial time while still offering speedups as an exact exponential-time solver.

We begin by discussing the parameters themselves. QAOA parameters are typically chosen with respect to QAOA
energy11–18 or the probability of sampling the optimal solution.19 Figure S1a shows the difference in QAOA parameters
in the two scenarios for the specific case of the LABS problem. First, we note that QAOA parameters that maximize
⟨C⟩MF are significantly different from those maximizing popt. Specifically, while the values of γ are similar, the value
of β for popt is much larger than that for ⟨C⟩MF. Qualitatively, this implies that the probability amplitudes are
allowed to “mix” more, making QAOA state not concentrated with respect to Hamming distance. This behavior is
seen when examining the QAOA output distribution, which is shown for both parameter schedules in Fig. S2 and
discussed in detail below.

1 5 10 15 20 25 30
p

0.00

0.05

0.10

0.15

0.20
QAOA parameters

β γ MF popt

−0.5 0.0 0.5 1.0 1.5
t

2

3

4

〈C
〉 M

F

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

po
pt

FIG. S1. a, Fixed QAOA parameters for p = 30 chosen with respect to the QAOA energy ⟨C⟩MF (“MF”) and probability of
sampling the optimal solution (“popt”). When the parameters are optimized with respect to popt, the value of β is significantly
larger throughout QAOA evolution. Subfigure reproduced from the main text. b, QAOA performance for N = 25, p = 30 with
parameters linearly extrapolated between fixed parameters for popt (t = 0) and ⟨C⟩MF (t = 1). QAOA parameters optimized
for ⟨C⟩MF give very poor values of popt and vice versa.

3

0 50 100 150 200
Energy level index

0.00

0.02

0.04

Pr
ob

ab
ili

ty
p = 1

QAOA popt

QAOA MF
Uniform

0 50 100 150 200
Energy level index

0.000

0.025

0.050

0.075

0.100

Pr
ob

ab
ili

ty

p = 5

0 20
0.00

0.02

0 50 100 150 200
Energy level index

0.00

0.05

0.10

0.15

Pr
ob

ab
ili

ty

p = 20

0 20
0.00

0.02

0.04

0 50 100 150 200
Energy level index

0.0

0.1

0.2

Pr
ob

ab
ili

ty

p = 40

0 20
0.00

0.05

ba

dc

FIG. S2. The probability of obtaining a binary string corresponding to a given energy level of the LABS problem (the zeroth
energy level is the ground state or optimal solution, lower is better) for varying p (a-d). When parameters are optimized with
respect to the expected merit factor (labeled “QAOA MF”), the QAOA output state is concentrated around the mean and
fails to obtain a high overlap with the ground state. On the other hand, when parameters are optimized with respect to popt

(labeled “QAOA popt”), the QAOA state has a high overlap with both ground state and higher energy states. The probability
of obtaining the ground state is 27.3 times greater for QAOA with parameters optimized with respect to popt at p = 40 (d).

Second, QAOA parameters that give good performance with respect to one metric are far from optimal with respect
to the other metric. Fig. S1b shows QAOA performance with parameters linearly extrapolated between the parameters

(β⟨C⟩MF , γ⟨C⟩MF) that give a high value of ⟨C⟩MF and (βpopt

, γpopt

) that give high popt : γ = tγpopt

+ (1− t)γ⟨C⟩MF

and β = tβpopt

+ (1 − t)β⟨C⟩MF . We note that the parameters β⟨C⟩MF , γ⟨C⟩MF (t = 1) give a very low value of popt

and vice versa. This suggests that significant performance gains are possible if parameters are chosen differently with
respect to the two figures of merit, rather than using one as a proxy for the other as is commonly done in QAOA
research.20,21 Similar observations have been made in Refs. 22 and 23, though the difference observed between the
two figures of merit is more drastic in our case due to the hardness of the problem considered.

In the numerical experiments presented in the main test, we use time to solution as the target metric. For com-
pleteness, we include the results showing QAOA performance as an approximation algorithm. We observe that QAOA
performs poorly on the LABS problem with respect to the expected merit factor ⟨C⟩MF. Specifically, we observe that
QAOA fails to outperform even simple classical techniques at high depth. Fig. S3 shows the expected merit factor of
QAOA for fixed p = 100 as a function of N , as well as examples of how the expected merit factor grows with p for two
fixed values of N . We observe that as N grows, QAOA at p = 100 achieves an expected merit factor ⟨C⟩MF of less
than 5. Note that explicit analytical sequences achieving merit factor > 6 are known.7 Moreover, we see that ⟨C⟩MF

grows increasingly slowly as N and p increase, suggesting that a prohibitively high value of p would be required to
achieve a high expected merit factor.

We can understand this behavior by examining the values of the merit factor attainable by binary strings (in
physics terms, we are examining the spectrum of the LABS Hamiltonian). For the N = 25 problem, presented in
Fig. S2, only the 4 lowest energy levels correspond to a merit factor better than 6. This means that QAOA must
concentrate all the wave function mass on a superposition of a small number of computational basis states. Due to
QAOA preserving the D4 symmetry of the problem,24 this is a highly entangled state, which is hard to prepare.25

4

10 15 20 25 30
N

2.5

5.0

7.5

10.0

12.5
M

er
it

fa
ct

or
QAOA (p = 100)
Optimal
Random guess

0 20 40 60 80 100
p

2

4

6

8

M
er

it
fa

ct
or

QAOA (N = 24)
QAOA (N = 32)

ba

FIG. S3. a, Performance of QAOA as an approximation algorithm. Explicit constructions of skew-symmetric sequences exist
that achieve F ≈ 6.34 for large N .7 Simulated annealing achieves F ≈ 5 for large N .9 For QAOA, the expected value of merit
factor ⟨C⟩MF is plotted. The expected merit factor of QAOA output is below the values easily attainable classically. b, For
both N = 24 and N = 32, the optimal merit factor is 8 (dashed line).

15 20 25 30 35 40
N

101

102

103

104

T
T

S

QAOA (p = 33)

15 20 25 30 35 40
N

102

103

104

105

106
Im

pr
ov

em
en

to
ve

rr
an

do
m

gu
es

s ba

FIG. S4. a, Time-to-solution (TTS) of QAOA with parameters chosen with respect to popt. b, Improvement over random
guess. For the largest case numerically considered, which is the N = 39 problem at p = 33, the expected number of shots
required to solve it is 1.2× 104. This is a 5.4× 106 factor improvement over random guess.

As a result, QAOA requires a very large value of p to obtain a high expected merit factor. If, on the other hand, we
choose the probability of sampling the exact optimal solution popt (overlap between QAOA state and the ground state
of the LABS Hamiltonian) as the target metric, a much lower value of p is needed to obtain good success probability.
Qualitatively, Fig. S2 shows how this state preparation succeeds by allowing a significant part of the QAOA state
to “leak” to high energy levels. This can be observed by noticing how the population of energy levels > 50 stays
relatively high for QAOA with parameters optimized with respect to popt, but becomes negligible if QAOA parameters
are chosen with respect to ⟨C⟩MF.

The success of QAOA in preparing states with a large overlap with the ground state of the LABS Hamiltonian (i.e.
states having a high probability of measuring exactly optimal solution) motivates the choice of time to solution as the
target metric for QAOA evaluation. We show the time to solution at the largest p explored numerically (p = 33) in
Figure S4. We remark that the QAOA succeeds at achieving high overlap at N ≤ 40.

Our results suggest a new way of viewing the potential of QAOA to provide algorithmic speedups and provide
an important caveat to theoretical results bounding the approximations attainable by QAOA with constant depth.26

Even in the regime where the expected solution quality of QAOA is bounded, it can be still useful as a tool to obtain
a high probability of measuring the exact optimal solution.

5

15 17 19 21 23 25 27 29 32
N

0.02

0.03

0.04

0.05

0.06
g§

QAOA popt

QAOA MF
1
N

1 5 10 15 20 25 30 35 40
p

0.00

0.05

0.10

0.15

0.20 QAOA parameters
b (N = 25)
g (N = 25)

b (N = 22, scaled)
g (N = 22, scaled)

ba

FIG. S5. a, Scaling of the optimized value of QAOA parameter γ with N for p = 1 when optimized with respect to expected
merit factor ⟨C⟩MF (“QAOA MF”) and probability of obtaining optimal solution popt (“QAOA popt”). Optimized γ∗ decreases
with N as 1

N
. b, QAOA parameters optimized with respect to ⟨C⟩MF for N =∈ {22, 25}. For N = 22, the parameters γ are

scaled by 22/25. After rescaling, the parameters for N = 22 and N = 25 are visually indistinguishable.

SIII. DETAILS OF NUMERICAL STUDIES

We now present in detail how the fixed parameters were chosen. Our procedure for doing so is as follows. First, we
optimize the QAOA parameters using the FOURIER12 reparameterization. We show evidence that the optimization
of the reparameterized QAOA gives the same performance as the more extensive optimization of the standard param-
eterization. Second, we set our fixed parameters to be the arithmetic mean of the (appropriately rescaled) optimized
parameters for smaller N . We provide evidence that for smaller N where directly optimized parameters are available,
the fixed parameters lead to QAOA performance that is close to that with the optimized parameters. We note that
better parameter setting schemes can only improve our performance.

A. Optimized QAOA parameters for LABS change with N

First, we observe that the optimized QAOA parameters are not invariant with N . Specifically, we observe that the
optimized value of γ∗ goes down with N as 1

N . S5a plots this for p = 1. We note that β∗ is roughly constant with
N . We observe this scaling for all p. As an example, S5b plots optimized parameters for two different values of N .
After rescaling γ∗ by N , the two sets of parameters are visually indistinguishable. Below, we take advantage of this
scaling of γ∗ in two ways. First, we improve the convergence of local optimization runs by rescaling the initialization
and the initial step size of the local optimizer. Second, we use it to correctly account for scale when executing QAOA
with fixed parameters.

The scaling of γ∗ with extremal properties of the objective function has been observed before for other problems.
For example, the normalized value of the maximum cut on D-regular graphs grows with D (to the first order) and γ∗

decreases as 1√
D
.27,28 Analogous scaling has been observed for weighted problems.29 In LABS, the energy Esidelobe(s)

grows as N2, so γ∗ decreases as 1
N . Formally establishing this connection is a promising direction for future research.

B. QAOA parameter optimization with FOURIER scheme

For a given figure of merit, we optimize the QAOA parameters as follows. In all cases below, we use the nlopt30

implementation of BOBYQA31 gradient-free local optimization algorithm. In all cases, we run BOBYQA until
convergence, with convergence specified by relative tolerances on changes in parameters and in objective function
value of 10−8. BOBYQA has been shown to outperform other local optimizers on the task of optimizing QAOA
parameters.13 We expect similar results with any other local hill-climbing algorithm, albeit at a potentially different
cost in terms of the number of iterations.

For p = 1, we optimize the QAOA parameter exhaustively by running the local optimizer from 400 initial points.
We set the initial step size (rhobeg) to 0.01/N . The initial points βinit, γinit are chosen uniformly at random from

6

Index

0.995

1.000

1.005

1.010

1.015

〈C
〉F M

F
/〈

C
〉O M

F

FIG. S6. The ratio between the expected merit factor of QAOA with parameters optimized by directly running local optimiza-
tion from many initial points (⟨C⟩OMF) and with parameters optimized using the FOURIER[∞, 0] scheme (⟨C⟩FMF) for N > 12.
We observe that the difference in the quality of the parameters obtained by the two optimization schemes is small.

βinit ∈ [0.1, 0.2], γinit ∈ [0, 0.85/N] when optimizing with respect to ⟨C⟩MF, and β
init ∈ [0.15, 0.3], γinit ∈ [0.6, 1.2/N]

when optimizing with respect to popt. The regions for initializations are read off from grid search results for p = 1.

For p > 1, we follow the FOURIER[∞, 0] scheme of Ref. 12. Specifically, we change the QAOA parameterization
to the frequency domain as follows:

γi =

p∑

k=1

uk sin

[(
k − 1

2

)(
i− 1

2

)
π

p

]
, (S1)

βi =

p∑

k=1

vk cos

[(
k − 1

2

)(
i− 1

2

)
π

p

]
. (S2)

Then we optimize over the new parameters u,v. We take the optimized parameters u∗
p−1,v

∗
p−1 for p − 1 and run

one local optimization from u∗
p = (u∗p−1, 0), v

∗
p = (v∗

p−1, 0). The initial step size (rhobeg) for local optimizer is set
to 0.01/N . An initial step size that is small and decreasing with N is central to the robust convergence of a local
optimizer, due to QAOA parameters having different scales for different N . We do not find it necessary for obtaining
high-quality parameters to perform objective function rescaling of the type explored in Refs. 29 and 32, though we
expect that it may reduce the number of iterations required by the local optimizer to converge.

C. Evidence of the success of the FOURIER reparameterization heuristic

To evaluate the success of the FOURIER parameter optimization heuristic, we compare the quality of optimized
parameters it finds with the quality of the parameters obtained by running a local optimizer with 100p seeds from
initial points sampled uniformly from βinit ∈ [0.1, 0.2]p,γinit ∈ [0, 0.85/N]p.

We find that the very expensive direct optimization performs very similarly to one local optimization run used in
the FOURIER scheme, as shown in Figure S6. Specifically, the mean difference between the two schemes is < 0.05%,
and in the worst case of the ones considered, FOURIER gives parameters that are only < 0.5% worse. Therefore
below, we simply consider parameters optimized using the FOURIER[∞, 0] scheme.

D. Procedure for obtaining the fixed parameters

The procedure we follow for obtaining the fixed parameters is described in the main text. We reiterate it here for
completeness. We optimize QAOA parameters for smaller values of N for which the simulation is relatively inexpensive

7

1 5 10 15 20
p

0.00

0.05

0.10

0.15

0.20
b,

g
N

20
21

22
23

24
25

26
27

1 5 10 15 20
p

0.00

0.05

0.10

0.15

0.20
Mean parameters

b
g

ba

FIG. S7. Visualization of how the fixed parameters with respect to ⟨C⟩MF are obtained. Visualization for popt is presented
in the main text. a, Optimized QAOA parameters β (top line) and γ (bottom line) for p = 21. γ is scaled by N/24, with
the constant factor of 1/24 added for figure readability. b, Fixed parameters obtained by taking the arithmetic mean over the
optimized parameters.

and set the fixed parameters to be the mean over the optimized parameters:

βFixed =
1

M

∑

N∈{N1,...,NM}
β∗
N , (S3)

γFixed =
1

M

∑

N∈{N1,...,NM}
Nγ∗

N , (S4)

where β∗
N , γ∗

N are the QAOA parameters optimized for N . The fixed parameters used in QAOA applied to a LABS

instance of size N are then given by βFixed, γ
Fixed

N . This process is visualized for parameters optimized with respect
to ⟨C⟩MF in Figure S7. We use optimized parameters for 20 ≤ N ≤ 27 when computing parameters for ⟨C⟩MF and
24 ≤ N ≤ 31 for popt.

E. Evidence of the success of the fixed parameter scheme

To evaluate the quality of fixed parameters, we compare the QAOA performance with fixed parameters and with
directly optimized parameters. Figure S8 presents the comparison. We observe that the two are very close for small p,
with the ratio between the two growing for higher p. Specifically, for parameters optimized with respect to the expected
merit factor ⟨C⟩MF, the median difference in ⟨C⟩MF between QAOA evaluated with fixed and directly optimized
parameters is less than 0.01% for p = 50, with the difference even lower for smaller p (S8a). For parameters optimized
with respect to popt, the difference in popt is larger and growing with p (S8c). Note that due to the exponentially small
value of popt, small absolute differences (including due to precision limitations) translate into large relative differences.
Nonetheless, we observe good performance with fixed parameters at high N , as visualized for N = 32 in Figure S8d.
QAOA performance with fixed parameters with respect to both figures of merit monotonically improves with p for
all values of p considered. As the performance gap between fixed and optimized parameters grows with p, further
improvements to fixed parameters are likely to yield even better scaling of QAOA TTS.

F. Scaling coefficient of QAOA TTS is not sensitive to the choice of Nmin

In the Main text we motivate the choice of the cutoff Nmin for the range of Ns to be included in the fit by examining
the stability of the quality of fit with varying p. We obtain Nmin = 28 as the minimum value required to maintain a
stable fit, and estimate QAOA scaling at 1.46N at p = 12. We now provide evidence that this value is not sensitive
to the choice of Nmin.

Fig. S9 shows the scaling exponent for QAOA TTS for varying choices of the cutoff Nmin. Taking the average over
exponents obtained when performing a fit with 20 ≤ Nmin ≤ 35 gives the estimated scaling of 1.45N (Fig. S9a), which
is slightly better than the one reported in the main text. As shown in Fig. S9b, for sufficiently large p and small Nmin

8

0 10 20 30
p

0.80

0.85

0.90

0.95

1.00
pop

t
fix

/
pop

t
O

0 10 20 30
p

0.0000

0.0005

0.0010

N = 32

popt
fix

popt
O

0 10 20 30 40 50
p

0.996

0.997

0.998

0.999

1.000

hC
ifi

x M
F
/
hC

iO M
F

0 10 20 30 40 50
p

2.0

2.5

3.0

3.5

4.0

N = 29

hCifix
MF

hCiOMF

ba

dc

FIG. S8. Comparison of QAOA performance with fixed (⟨C⟩fixMF, p
opt
fix) and optimized (⟨C⟩OMF, p

opt
O) parameters. a,c, Shaded

area shows 95% confidence interval. b,d, Despite the relative differences between performance with optimized and transferred
parameters growing with p, we observe that for all cases considered, QAOA performance improves monotonically as expected.
Since the absolute differences are small, the performance with fixed and directly optimized parameters is visually indistinguish-
able.

the exponent changes as Nmin is increased, indicating that a larger regime of N must be explored to obtain a stable
linear scaling.

G. Scaling coefficient of QAOA TTS does not follow power law

One of the important findings of this work is that for LABS problem increasing QAOA depth p beyond a certain small
constant does not lead to better scaling. This puts the findings of this work in contrast to those of Refs. 19, 33, and
34. We observe that unlike in Ref. 19, the scaling coefficient c in TTS = Θ(2−cN) does not follow a power law. This
is shown in Figure S10. For the coefficient c to follow a power law, it must depend on p as c1× pc2 for some constants
c1, c2. When the cutoff is chosen to ensure good fit (N = 28), we see clear deviation from a power law. We note that
if we include smaller values of N in the fit and ignore the low quality of the fit, we observe a clear power law scaling
of c ∼ 0.77× p−0.18.

H. Comparison of performance between QAOA and amplitude amplification

In this work we propose a strategy for using QAOA as a building block for algorithmic speedups by combining it
with amplitude amplification (AA) or, more specifically, generalized minimum-finding as described in Appendix C of
Ref. 35. Specifically, we propose running the quantum minimum-finding algorithm with constant-depth QAOA as a
subroutine. If the QAOA circuit prepares the state with popt overlap with the ground state of the LABS Hamiltonian,
the minimum-finding algorithm would need apply the QAOA unitary and an oracle for computing the LABS cost

function O
(
1/

√
popt

)
times to obtain a constant probability of measuring a bitstring corresponding to the optimal

9

20 23 26 29 32 35
Nmin included in the fit

1.35

1.40

1.45

1.50

1.55

Sc
al

in
g

ex
po

ne
nt

QAOA p = 12
Mean: 1.45

20 23 26 29 32 35
Nmin included in the fit

1.2

1.4

1.6

1.8

Sc
al

in
g

ex
po

ne
nt

p
1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16
17
18

19
20
21

22
23
24

25
26
27

28
29
30

ba

FIG. S9. The scaling exponent for QAOA TTS for varying choices of Nmin included in the range of values of N for fit at a,
p = 12 and b, for varying p. If smaller Nmin are included, the scaling exponent continues to improve with p, with the quality
of fit decaying with p (see Main text and Fig. S10). For sufficiently high Nmin, the exponent does not improve beyond p ≈ 10.
At p = 12, the scaling exponent is not sensitive to the choice of Nmin (a).

0 10 20 30
p

0.4

0.5

0.6

0.7

Sc
al

in
g

co
ef

fic
ie

nt
c

Range for the fit
10≤ N ≤ 39
28≤ N ≤ 39

FIG. S10. The scaling coefficient c in TTS = Θ(2−cN) as a function of p. The blue line is included for illustration as including
N < 28 leads to low quality of the fit. When the quality of the fit is high (28 ≤ N ≤ 38), the scaling coefficient does not follow
a power law.

solution.
We note that our numerical results suggest that increasing the QAOA depth is always beneficial as compared to

doing a smaller number of QAOA steps and increasing the number of amplitude amplification steps. This is visualized
in Figure S11. As this figure shows, for sufficiently high p the gain from a step of QAOA is very close to the gain from
amplitude amplification, which provides an upper bound on the expected gain from one step of minimum-finding. At
the same time one step of QAOA is much simpler to implement as it only requires the phase oracle and a series of
one-qubit gates (mixer). We note that we do not provide exact gains from a step of the minimum-finding algorithm
as they are non-trivial to estimate. However, asymptotically it is equivalent to amplitude amplification with an oracle
that marks optimal solutions.

10

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A
N=28

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=29

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=30

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=31

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=32

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=33

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=34

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=35

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=36

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=37

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=38

10 20 30
0.9

1.0

1.1

0 20
Step

100

101

102

Q
A

O
A

im
pr

ov
em

en
to

ve
rA

A

N=39

10 20 30
0.9

1.0

1.1

FIG. S11. The ratio between the gains in the probability of measuring the optimal solution from one step of QAOA and
amplitude amplification (AA). QAOA provides orders of magnitude larger improvements for the first few steps, and then
behaves approximately like amplitude amplification.

I. Proof of Theorem 1

We now present the proof of Theorem 1 of the main text. Our technique is based on the generalized minimum-
finding procedure outlined in Lemma 48 of Ref. 35. For reader’s convenience and completeness, we begin by restating
our algorithm and the Theorem.

Lemma 1 (Exponential Quantum Search, Ref. 36). Let |ψ⟩ = U |0⟩⊗N be a quantum state in a 2N -dimensional
Hilbert space with computational basis elements indexed by N -bit bitstrings, and m : {0, 1}N → {0, 1} be a marking
function such that

∑
{x|m(x)=1} |⟨ψ|x⟩|2 ≥ p. There exists a quantum algorithm EQSearch(U,m, δ) that outputs an

element x∗ such that m(x∗) = 1 with probability at least δ using O
(

1√
p log

(
1
δ

))
applications of U and m.

11

Algorithm 1 QAOA Enhanced with Quantum Minimum-Finding

Require: Unitary UQAOA acting on C2N such that |⟨x∗|UQAOA|0⟩⊗N | ≥ 1/
√
popt for unknown popt, VLABS for computing

Esidelobe into a register, and δ ∈ (0, 1), positive number M ≤ 2N , C is the constant corresponding to the O(·) in Lemma 1
Ensure: If M is greater than 1/

√
popt, output x∗ with ≥ 1 − δ probability using O(log(1/δ)M) calls to UQAOA and VLABS

(and their inverses).
xres is set to an empty list.
for i← 1 to ⌈log(1/δ)⌉ do

t← 0; s0 ←∞
while number of calls to UQAOA & VLABS is < 3CMN do

t← t+ 1
Define mt : {0, 1}N → {0, 1} such that mt(x) = 1 if and only if Esidelobe(x) < st−1. Note that mt can be coherently

evaluated using one query to VLABS.
Set st = EQSearch(UQAOA,mt, 1/(6 · 2N)).

end while
Append st to xres.

end for
Output minimum of xres.

Theorem 1. Suppose a constant-depth QAOA circuit UQAOA prepares a state |ψ⟩ = UQAOA|0⟩⊗N with N ≥ 3, such
that we have |⟨x∗|ψ⟩| ≥ 1/

√
popt, where |x∗⟩ encodes an optimal solution to the N -bit LABS problem in a computational

basis state, and we assume that popt ≥ 1/N . Then, running Algorithm 1 with parameters M ≥ 1/
√
popt and failure

probability δ, runs with a gate complexity of O(poly(N) log(1/δ)M) and finds x∗ with probability at least 1− δ.

Proof. We will first analyze the randomized Algorithm 1 as a Las Vegas algorithm, i.e. we assume that the internal
while loop is infinite. In the upcoming analysis we will assume that every call to EQSearch in the internal loop
behaves as intended. Note that we choose the failure probability of each such call to be 1/(6 · 2N). The total number
of calls cannot be more than 2N and so by the union bound, every call succeeds except with probability at most 1/6.

The algorithm generates a monotonically decreasing sequence of samples, uses EQSearch in each iteration to search
for a sample that is strictly lesser than the previous one. Since the sequence of samples is strictly decreasing and
there are N possible distinct samples, the algorithm eventually returns the minimum. Since correctness is eventually
guaranteed, we can simply bound the expected number of iterations before the sequence finds the minimum. If this
expected number is m, we can run the internal loop 2m times to ensure that we find the minimum with probability
at least 1/2. Consequently, 2m log

(
1
δ

)
iterations suffice to ensure that we find the minimum with probability at least

1− δ. It remains to show that the expected number of iterations before the minimum is found is at most O
(

1√
popt

)
.

For this argument, we define the following quantities. (x1 = x∗, x2, . . . , xn) is the list of bit-strings sorted in
ascending order of the value of Esidelobe, and define P (ξ(X)) to be the probability of event ξ(X) when X is a
bitstring sampled by measuring |ψ⟩ in the computational basis. Suppose in some iteration t, the sample returned by
EQSearch is st. In the next iteration, EQSearch searches for an element with sidelobe energy less than st. The
central observation is the following: for any xk where k ∈ [N], the probability that some st = xk given that t is the
first iteration where xk appears in the list of obtained samples is given by P (X = xk)/P (X ≤ xk). To see this, we
observe as in Ref. 35 that:

12

Pr(st = xk|st ≤ xk ∧ st−1 > xk) =
Pr(st = xk)

Pr(st ≤ xk ∧ st−1 > xk)

=
∑

xl>xk

Pr(st = xk ∧ st−1 = xl−1)

=
∑

xl>xk

Pr(st = xk ∧ st−1 = xl−1)

Pr(st ≤ xk ∧ st−1 > xk)

=
∑

xl>xk

Pr(st = xk ∧ st−1 = xl−1) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 = xl)

Pr(st ≤ xk ∧ st−1 > xk) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 = xl)

=
∑

xl>xk

Pr(st = xk ∧ st−1 = xl−1) Pr(st ≤ xk ∧ st−1 = xl)

Pr(st ≤ xk ∧ st−1 > xk) Pr(st ≤ xk ∧ st−1 = xl)

=
∑

xl>xk

Pr(st = xk|st−1 = xl−1) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 = xl)

Pr(st ≤ xk|st−1 = xk) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 > xl)

=
∑

xl>xk

P (X = xk) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 = xl)

P (X ≤ xk) Pr(st−1 = xl) Pr(st ≤ xk ∧ st−1 > xl)

=
P (X = xk)

P (X ≤ xk)
(S5)

Notice that since a value can be sampled at most once, and the minimum is obtained within n steps, the probability
that a given value xk occurs in the list of observed samples is P (X = xk)/P (X ≤ xk).

To bound the expected number of queries before the minimum (x1) is found by the algorithm, we associate with
each bitstring xl ∈ {xn, xn−1, . . . , x2} the probability that it is an obtained sample in some iteration, and the cost of
performing the corresponding search for an element less than xl. The cost of the search, for our chosen parameters is

at most C log(6·2N)√
P (X<xl)

≤ 2CN√
P (X<xl)

, where the last inequality holds whenever N ≥ 3.

The total expected number of queries before the minimum x1 is found, is therefore given by

N∑

i=2

2CN · P (X = xi)

P (X ≤ xi)

√
1

P (X < xi)
≤

N∑

i=2

2CN

P (X ≤ xi)

√
1

P (X < xi)
≤ 2CN

∫ 1

popt

r−3/2 dr ≤ CN
√
popt

(S6)

If we run the inner loop of Algorithm 1 more than 3 times the expected number of queries required to find x∗, as
prescribed if M ≥ 1/

√
popt, we fail to find x∗ with probability at most 1/3 by the Markov inequality as long as no

query to EQSearch fails. Additionally, by the earlier discussion, a query in the internal loop fails with probability at
most 1/6. Therefore, by a union bound, each application of the inner loop finds x∗ with probability of at least 1/2.
Repeating the inner loop log(1/δ) times ensures that x∗ is found with probability at least 1− δ (if not, the inner loop
has to fail to find x∗ in log(1/δ) independent trials).

J. Details of the classical solver scaling

The scaling of the commercial branch-and-bound solvers is presented in Figure S12. For each solver, we run it with
100 random seeds for N ≤ 32 and 10 random seeds for N > 32 and report the mean. The minimum N to include in
the fit was chosen to maximize the quality of fit. We set the Gurobi parameters as follows: Cuts=0, Heuristics=0.
For the other parameters in Gurobi and CPLEX the defaults are used. We observe that the performance of the two
commercial solvers considered is within a 95% confidence interval of each other, with the TTO scaling matching that
reported in Ref. 37.

We report complete results for the Memetic Tabu solver in Figure S13. The scaling is obtained by extrapolating
the number of cost function evaluations made by the Memetic Tabu algorithm at different lengths. This quantity
is fixed over repeated seeds for a given seed and length, unlike the execution time that may fluctuate depending on
the runtime environment. The fluctuation in running time is much larger for Memetic Tabu as compared to branch-
and-bound due to lower absolute value of the runtime (< 1 sec for N = 40) The time to evaluate the cost function
on a sequence of length N scales only as N2, which does not produce a consistent effect on runtime scaling at small

13

10 20 30 40
N

10°1

101

103

105

107

Ti
m

e
(s

ec
on

ds
)

CPLEX TTS
TTS fit: 1.672N

CPLEX TTO
TTO fit: 1.731N

10 20 30 40
N

10°1

101

103

105

107
Ti

m
e

(s
ec

on
ds

)
Gurobi TTS
TTS fit: 1.615N

Gurobi TTO
TTO fit: 1.756N

ba

FIG. S12. Time-to-solution (TTS) and time to obtain a certificate of optimality (time-to-optimality or TTO) of a, Gurobi and
b, CPLEX. For Gurobi, the 95% confidence interval (CI) for TTS is (1.571, 1.659) and for TTO is (1.721, 1.792). For CPLEX,
the 95% CI for TTS is (1.609, 1.737) and for TTO is (1.693, 1.770).

20 23 26 29 32 35 38 41 44 47 50 53 56
N

105

107

109

N
um

be
ro

fc
al

ls

TTS fit: 1.354N

FIG. S13. Box plots showing the run time of Memetic Tabu. The scaling fit is reported with respect to the mean. The 95%
confidence interval (CI) is (1.325, 1.383). The whiskers are minimum and maximum, box is showing quartiles and the horizontal
line in the box is the mean.

lengths. The TTS scaling is therefore essentially the same as the scaling of the number of function evaluations,10

and we choose to report the latter, more stable quantity. The seeds chosen for the runs are a contiguous block of 50
integers chosen from a random starting point. The Memetic Tabu solver is run in single-threaded mode for all our
experiments, to avoid the overestimation of cost function evaluations arising from race conditions between exploration
and termination checks.

SIV. EXPERIMENTS ON TRAPPED-ION SYSTEMS

A. Experimental system

The experiments in this work were performed on Quantinuum H1 and H2 platforms.38,39 The system design is based
on the QCCD architecture with multiple separate gate zones. Each gate zone is used to perform operations on an
arbitrary pair of two qubits at a time, suppressing crosstalk and maintaining high fidelity. The hyperfine approximate
clock states of 171Yb+ in the 2S1/2 state are used to encode qubit information. Namely, |0⟩ ≡ |F = 0,mf = 0⟩ and

|1⟩ ≡ |F = 1,mf = 0⟩. After loading, the qubits can be prepared in |0⟩ via optical pumping.38,39

The systems have all-to-all connectivity with two-qubit gates between pairs of qubits implemented by ion transport,
which brings the pairs into the same gate zone. To implement two-qubit gates, a phase-sensitive Mølmer-Sørensen
(MS) gate sandwiched between single-qubit wrapper pulses is used. It in turn gives the zz gate Rzz(γ) = exp(−iγzz/2),
where the rotation angle can be precisely controlled by changing the parameters in the MS gate.38,39 Both the H1-1

14

and H2 systems used in this work have a typical average two-qubit infidelity of 2×10−3, with single qubit infidelity two
orders of magnitude smaller. The qubit state can be read out via state-dependent resonance fluorescence measurement.
Note that mid-circuit measurement and reset can be implemented while causing a small crosstalk error due to the
stray light from the measurement and reset laser beams.

B. Circuit compilation and optimization

We now present the circuit compilation procedure for the experiments on the trapped-ion quantum processor. The
H-series devices used in this work have at most five gate zones,39 i.e. at most five two-qubit gates can be executed
in parallel. This implies that optimizing the circuit for full parallelism may result in diminishing returns past five
parallel gates. In any case, the highest error operation on the devices is the two-qubit gate, so the primary limiting
factor for achieving high-fidelity results is the two-qubit gate count. Thus, we chose to first optimize the two-qubit
gate count. In addition, the cost operator is the composition of diagonal gates, and thus we are free to apply them in
any order. We optimize the order to maximize the number of gate cancellations. A similar approach has been used
in Ref. 40 for devices with nearest-neighbor connectivity.

We start by decomposing the four-body terms Rzzzz(γ) into four cnots and a single Rzz(γ), where Rzzzz(γ) and

Rzz(γ) denote evolution under zzzz and zz coupling with angle γ, respectively. Note that the Rzz(γ) = e−i γ
2 zz is the

native gate for the Quantinuum H-series trapped-ion processors.

𝑒!
"# $%

!"
% #
" %
$"
% %
"

⊗

⊗

⊗

𝑅!!(𝜃)⊗

FIG. S14. Decomposition of four-body interaction terms into a two-body Rzz gate and four cnot’s. Figure reproduced from
the main text.

10 20 30 40
N

0

5000

10000

15000

20000

Tw
o-

qu
bi

tg
at

e
co

un
t

Random
Greedy

FIG. S15. Comparison of two-qubit gate count (number of Rzz(γ) + Rzz(π/2)) of QAOA circuit at p = 1 with random term
ordering and with the greedy optimization. The “random” line is the average over 20 random orderings of the two- and four-
body terms. Both random and greedy are further optimized by tket,41 and the resulting gate count is plotted. Cubic fit line
added to guide the eye.

The goal of the first step of the compilation procedure is to schedule the Rzzzz(γ) gates corresponding to four-body
terms in a way that greedly cancels as many cnots as possible (see Figure S14 for the decomposition). The second
step deals with the two-body terms and attempts to schedule each Rzz(γ) gate near a four-body term where one of
the cnot acts on the same qubits as the two-body term. This is to leverage two-qubit gate resynthesis implemented
in tket.41 These steps are described in detail in Algorithm 2. Then, the resulting circuit is passed to tket circuit

15

optimizer to transpile the circuit into the H-series native two-qubit gates: Rzz(γ) and Rzz(π/2). The preliminary
step of greedly optimizing the layout of the interactions reduced the two-qubit gate count by 1.7 times on average
compared to tket alone. The improvement in two-qubit gate count from the greedy cnot cancellation is shown in
Fig. S15. Lastly, we compared a variety of circuit optimizers and found that tket resulted in the most significant
gate-count reduction.

Algorithm 2 Greedy cost-operator circuit optimization

Require:
List of four-tuples of (i, j, k, l), with i < j < k < l, where (i, j) and (k, l), respectively correspond to the qubits of top two

cnotij and bottom two cnotlk in decomposition of Rzzzz presented in Figure S14. Note the indices corresponding to the
control and target, respectively, are reversed for (i, j) and (k, l)

List of two-tuples (i, j), with i < j, indicating which qubits to apply each Rzz rotation to.
Ensure: Output a single list that contains all of the terms (both four- and two-body) in the order in which they should be

applied, according to the greedily-optimized circuit.

circuit← empty list
for each collection of four body terms (i, j, k, l) grouped by locality d := j − i (= l − k for LABS) do

current ← uniformly randomly sample (and remove) a term (i, j, k, l) from the collection of terms of locality d.
add current to the circuit list
tops ← list initialized with tuple (i, j)
bottoms ← list initialized with tuple (k, l)
while there are still more terms in the collection do

for each term (r, s, t, v) in the collection do
if (r, s) ∈ tops or (t, v) ∈ bottoms then

Assign the term a score of +1
else

Assign the term a score of −1.
end if
if ∃m | (m, r) ∈ bottoms or ∃ a | (a, t) ∈ tops then

Subtract 1 from terms score. // This implies that inserting this term to the circuit would mean that there is
some cnotmr or cnotta currently in the circuit that can never be cancelled.

end if
end for
current ← term (a, b, c, d) in collection with highest score
add current to the circuit list
Add (a, b) to tops (if not already in) and (c, d) to bottoms (if not already in)

end while
end for
for each two body term (i, j) do

for each four body term (r, s, t, v) in circuit do
insert (i, j) after (r, s, t, v) in circuit if (i, j) = (r, s) or (i, j) = (t, v) and break inner loop

end for
if (i, j) was not inserted into circuit then

Add (i, j) to end of circuit
end if

end for
output circuit

We note that there exists an alternative proposal42 for reducing the cost of implementing the LABS cost operator.
In this approach, the phase operator is replaced by the evolution under the Hamiltonian corresponding to

Esidelobe(s) =
N−1∑

k=1

|Ak(s)|, (S7)

where

Ak(s) =
N−k∑

i=1

sisi+k. (S8)

16

+ !

…

+ "

+ #

+ $

M

An
ci

lla
Da

ta
 q

ub
its

	𝐻 	𝐻0

𝑈 !
"#
$%

	

(1) (2) (3)

. . .
.

(4) (6)

	𝐸

(5)

FIG. S16. Overview of one step of the error-detection scheme. A part of the circuit Uphase is “sandwiched” between two parity
checks. Any error on data qubits that does not commute with the check is guaranteed to be detected.

This is in contrast to the approach mentioned in the main text:

Esidelobe(s) =
N−1∑

k=1

A2
k(s). (S9)

The Hamiltonian corresponding to the absolute value of the autocorrelations has the same ground state space and
energy levels as the one in Equation S9. While this reduces the asymptotic complexity for computing the energy
to Θ(N2), it requires quantum arithmetic, putting it beyond the capability of current hardware. Thus, we focus on
optimizing the cost operator corresponding to Equation S9. Further gate count reductions may be possible by fixing
some of the variables and applying the techniques of Ref. 43, though doing so is outside of the scope of this work.

C. Summary of the error-detection scheme

We now briefly summarize the error-detection scheme. The proof that our scheme is capable of detecting an
arbitrary single-qubit error in the phase operator circuit under the assumption of noiselessly implemented parity
checks is a special case of Ref. 44, Theorem 1. We include a brief discussion of the scheme here for completeness
and refer interested readers to Ref. 44 for a detailed discussion. We first consider the case of when just one parity
is checked (either x or z), and then show how the analysis generalizes to the case when both parities are checked
simultaneously. Figure S16 presents the overview of the circuit. Let the state of the data qubits before the check be
ρinit and assume the ancilla is perfect and initialized to the pure state |0⟩. The z parity check is given by the operator
Cz =

1
2

(
i⊗ |0⟩ ⟨0|+ z⊗N ⊗ |1⟩ ⟨1|

)
. Denote the part of the phase operator sandwiched between the checks as Uphase.

Note that Uphase can encompass the full phase operator or only a part of it. At (1), the state is ρ(1) = ρinit ⊗ |0⟩ ⟨0|.
At (2), the state is ρ(3) = ρinit ⊗ |0⟩⟨0|+|1⟩⟨1|

2 . After the first check is applied, at (3) the state becomes

ρ(3) =
1

2

(
ρinit ⊗ |0⟩ ⟨0|+ z⊗Nρinitz

⊗N ⊗ |1⟩ ⟨1|
)
. (S10)

If no error during the application of Uphase occurs, then the state at point (4) is

ρno error
(4) =

1

2

(
UphaseρinitU

†
phase ⊗ |0⟩ ⟨0|+ Uphasez

⊗Nρinitz
⊗NU†

phase ⊗ |1⟩ ⟨1|
)
, (S11)

and

ρno error
(5) =

1

2

(
UphaseρinitU

†
phase ⊗ |0⟩ ⟨0|+ z⊗NUphasez

⊗Nρinitz
⊗NU†

phasez
⊗N ⊗ |1⟩ ⟨1|

)
(S12)

=
1

2

(
UphaseρinitU

†
phase ⊗ |0⟩ ⟨0|+ UphaseρinitU

†
phase ⊗ |1⟩ ⟨1|

)
(S13)

= UphaseρinitU
†
phase ⊗

|0⟩ ⟨0|+ |1⟩ ⟨1|
2

, (S14)

17

so the final state is

ρno error
(6) = UphaseρinitU

†
phase ⊗ |0⟩ ⟨0| . (S15)

Therefore if no error occurred, measuring the ancillary qubit will always give the measurement outcome 0.
If a single-qubit Pauli error E occurred during the execution of Uphase, the state at (4) becomes

ρ(4) =
1

2

(
EUphaseρinitU

†
phaseE

† ⊗ |0⟩ ⟨0|+ EUphasez
⊗Nρinitz

⊗NU†
phaseE

† ⊗ |1⟩ ⟨1|
)
, (S16)

and

ρ(5) =
1

2

(
EUphaseρinitU

†
phaseE

† ⊗ |0⟩ ⟨0|+ z⊗NEUphasez
⊗Nρinitz

⊗NU†
phaseE

†z⊗N ⊗ |1⟩ ⟨1|
)
. (S17)

If E is a Pauli, it can either commute or anti-commute with the check z⊗N . If it anti-commutes, then

ρ(6) =
1

2

(
EUphaseρinitU

†
phaseE

† ⊗ |0⟩ ⟨0| − Ez⊗NUphasez
⊗Nρinitz

⊗NU†
phasez

⊗NE† ⊗ |1⟩ ⟨1|
)

(S18)

= EUphaseρinitU
†
phaseE

† ⊗ |0⟩ ⟨0| − |1⟩ ⟨1|
2

, (S19)

and the final state

ρ(6) = UphaseρinitU
†
phase ⊗ |1⟩ ⟨1| . (S20)

Then measuring the ancillary qubit will return 1, and the error will be detected. A Pauli error that commutes with
the check, however, will go undetected.

When both x⊗N and z⊗N parities are checked, no odd-weight Pauli commutes with both checks. Therefore,
any odd-weight Pauli error will be detected by the implemented scheme. If the checks are noiseless, increasing the
frequency of checks by reducing the size of the circuit Uphase between the checks can only improve the final fidelity.
However, in practice the checks are noisy, introducing a trade-off between the increase in the errors detected and the
errors introduced by the checks themselves.

D. Performance of the error-detection scheme

In this section, we provide details on the implementation of the proposed error-detection scheme. For a circuit
with m checks, we separate the phase operator into m parts, where each part has approximately the same number
of two-qubit gates. We observe that increasing the frequency of the parity checks up to m = 3 improves the QAOA
performance. Fig. S17a shows improvements in expected merit factor after post-selection. More measurements
increases the ratio of samples with detected errors, increasing the overhead of the error-detection scheme in terms of
the number of repetitions. Fig. S17b shows how this overhead increases with N by plotting the decay of the ratio
of samples with no error detected to all samples (“post-selection ratio”). This ratio drops to below 10% at N ≥ 15
and m = 3. To trade off the number of repetitions required against the fidelity of the final result, we set m = 3 in
our experiments. We further note that in our experiments, the post-selection typically keeps the bitstring with the
highest merit factor sampled from experiments, as shown in Fig. S18. Note that in a practical optimization setting,
the best of all bitstrings corresponding to valid solutions would be chosen as the output.

An important benefit of our error-detection scheme is reduced time to a high-quality sample, i.e. a sample with no
errors detected. The time improvement comes from the ability to stop the execution when a mid-circuit measurement
detects an error. This capability is particularly relevant to trapped-ion systems with relatively low clock speeds and
very long coherence times enabling such classical feedback. Although available hardware supports this feature, we do
not implement the early stopping in our hardware experiments. The time savings provided below are estimates.

We denote the probability that no detectable error occurs during part i as pi. For the case without any mid-circuit
syndrome measurement, the average time needed to reach a measurement result with a high merit factor, i.e., no
parity error detected for all the check measurements, is given by

t̄1 = t0/(
m∏

i

pi), (S21)

18

0 1 2 3
Number of Parity Checks

1.4

1.6

1.8

2.0
hC

i M
F

Random
Noiseless
H2

8 10 12 14 16 18
N

0.0

0.2

0.4

0.6

0.8

Po
st

-s
el

ec
tio

n
R

at
io

1st split
2nd split
3rd split
H1-1
H2

ba

FIG. S17. a, Expected merit factor as a function of the number of error checks used when post-selecting the data qubit results
for the N = 15 experiment on the H2 hardware system with 5000 repetitions. Here m = 3 is the number of z- and x-parity
checks. The error bars become larger as we discard more shots due to more errors being detected with more parity checks.
The first data point corresponds to the case when we keep all the results from measurement on the data qubits and do not
do post-selection. b, Post-selection ratio when splitting the phase operator into three parts and performing parity syndrome
measurement at the end of each part. The curves show the simulation results using realistic parameters of the Quantinuum
H2 trapped-ion device. The measured results on both H1 and H2 hardware with three checks are in good agreement with
simulations.

8 10 12 14 16 18
N

5

10

15

be
st

sa
m

pl
ed

m
er

it
fa

ct
or random

optimal
H1-1
H2

FIG. S18. Experimentally sampled bitstring that has the highest merit factor for different N . The number of shots taken is
2000 for N = 8, 9 and 5000 for other N . Circles (diamonds) are the data without (with) post-selection. They have exact same
values except for N = 13 and N = 17. The best sampled bitstrings before post-selection have the same merit factor as true
optimal bitstrings for all instances studied here.

where t0 is the total circuit time. With mid-circuit check and feed-forward discard of the remaining circuit conditioned
on the check result, the average time to get a bitstring result for which the merit factor has a high value reads as

t̄2 = t0/(
m∏

i

pi)× (
m−1∑

i

(
i−1∏

j=0

pj(1− pi)
i

m
) +

m−1∏

k

pk), (S22)

with p0 = 1. Here we neglect the gate time between data qubits and ancillary qubits. The comparison between the
two is shown in Fig. S19, indicating that our error check method would reduce the time to get a bitstring with a high
merit factor.

∗ Corresponding author. Email: ruslan.shaydulin@jpmchase.com
1 A. Boehmer, IEEE Transactions on Information Theory 13, 156 (1967).

19

8 10 12 14 16 18
N

0

10

20

30

A
ve

ra
ge

tim
e/

t 0

no error check
with error check

FIG. S19. Simulation of average time (normalized by t0) to a bitstring without detectable parity check errors. The number of
splits m is set to 3. The simulations are performed using realistic parameters of the Quantinuum H2 trapped-ion device.

2 M. Schroeder, IEEE Transactions on Information Theory 16, 85 (1970).
3 M. Golay, IEEE Transactions on Information Theory 18, 449 (1972).
4 M. Golay, IEEE Transactions on Information Theory 23, 43 (1977).
5 M. Golay and D. Harris, IEEE Transactions on Information Theory 36, 1163 (1990).
6 G. Beenker, T. Claasen, and P. Hermens, Philips Journal of Research 40, 289 (1985).
7 J. Jedwab, D. J. Katz, and K.-U. Schmidt, Journal of Combinatorial Theory, Series A 120, 882 (2013).
8 M. Golay, IEEE Transactions on Information Theory 28, 543 (1982).
9 J. Bernasconi, Journal de Physique 48, 559 (1987).

10 B. Bošković, F. Brglez, and J. Brest, Applied Soft Computing 56, 262 (2017).
11 E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028 (2014).
12 L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, Physical Review X 10, 021067 (2020).
13 R. Shaydulin, I. Safro, and J. Larson, in IEEE High Performance Extreme Computing Conference (2019).
14 G. E. Crooks, arXiv:1811.08419 (2018).
15 M. Streif and M. Leib, Quantum Science and Technology 5, 034008 (2020).
16 X. Lee, Y. Saito, D. Cai, and N. Asai, in International Conference on Quantum Computing and Engineering (IEEE, 2021).
17 S. H. Sack and M. Serbyn, Quantum 5, 491 (2021).
18 O. Amosy, T. Danzig, E. Porat, G. Chechik, and A. Makmal, arXiv:2208.09888 (2022).
19 S. Boulebnane and A. Montanaro, arXiv:2208.06909 (2022).
20 J. Larkin, M. Jonsson, D. Justice, and G. G. Guerreschi, Quantum Science and Technology 7, 045014 (2022).
21 P. C. Lotshaw, T. S. Humble, R. Herrman, J. Ostrowski, and G. Siopsis, Quantum Information Processing 20 (2021).
22 L. Li, M. Fan, M. Coram, P. Riley, and S. Leichenauer, Physical Review Research 2 (2020).
23 P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner, Quantum 4, 256 (2020).
24 R. Shaydulin, S. Hadfield, T. Hogg, and I. Safro, Quantum Information Processing 20 (2021).
25 S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Physical Review Letters 125 (2020).
26 J. Basso, D. Gamarnik, S. Mei, and L. Zhou, in IEEE Symposium on Foundations of Computer Science (2022).
27 Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Physical Review A 97 (2018).
28 J. Basso, E. Farhi, K. Marwaha, B. Villalonga, and L. Zhou, Proceedings of the Conference on the Theory of Quantum

Computation, Communication and Cryptography 7, 1 (2022).
29 S. H. Sureshbabu, D. Herman, R. Shaydulin, J. Basso, S. Chakrabarti, Y. Sun, and M. Pistoia, arXiv:2305.15201 (2023).
30 S. G. Johnson, “The NLopt nonlinear-optimization package,” (2022), http://github.com/stevengj/nlopt.
31 M. J. Powell, Cambridge NA Report NA2009/06, University of Cambridge, Cambridge 26 (2009).
32 R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble, ACM Transactions on Quantum Computing 4, 1

(2023).
33 P. C. Lotshaw, G. Siopsis, J. Ostrowski, R. Herrman, R. Alam, S. Powers, and T. S. Humble, “Approximate Boltzmann

distributions in quantum approximate optimization,” (2022).
34 V. Akshay, H. Philathong, E. Campos, D. Rabinovich, I. Zacharov, X.-M. Zhang, and J. D. Biamonte, Physical Review A

106 (2022).
35 J. van Apeldoorn, A. Gilyén, S. Gribling, and R. de Wolf, Quantum 4, 230 (2020).
36 G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Contemporary Mathematics , 53 (2002).
37 T. Packebusch and S. Mertens, Journal of Physics A: Mathematical and Theoretical 49, 165001 (2016).
38 J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes,

K. Mayer, C. Ryan-Anderson, and B. Neyenhuis, Nature 592, 209 (2021).
39 S. A. Moses et al., arXiv:2305.03828 (2023).

20

40 J. Unger, A. Messinger, B. E. Niehoff, M. Fellner, and W. Lechner, arXiv:2211.11287 (2022).
41 S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Duncan, Quantum Science and Technology 6,

014003 (2020).
42 Y. R. Sanders, D. W. Berry, P. C. Costa, L. W. Tessler, N. Wiebe, C. Gidney, H. Neven, and R. Babbush, PRX Quantum

1 (2020).
43 R. Ayanzadeh, N. Alavisamani, P. Das, and M. Qureshi, in International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ACM, 2023).
44 A. Gonzales, R. Shaydulin, Z. H. Saleem, and M. Suchara, Scientific Reports 13 (2023).

