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Abstract

Quantum computers are expected to surpass the computational 
capabilities of classical computers and have a transformative impact 
on numerous industry sectors. We present a comprehensive summary 
of the state of the art of quantum computing for financial applications, 
with particular emphasis on stochastic modelling, optimization and 
machine learning. This Review is aimed at physicists, so it outlines the 
classical techniques used by the financial industry and discusses  
the potential advantages and limitations of quantum techniques. 
Finally, we look at the challenges that physicists could help tackle.

Sections

Introduction

Stochastic modelling

Optimization

Machine learning

Outlook

1JPMorgan Chase, New York, NY, USA. 2University of Chicago, Chicago, IL, USA. 3Fujitsu Research of America, Inc., 
Sunnyvale, CA, USA. 4Menten AI, San Francisco, CA, USA. 5University of Delaware, Newark, DE, USA. 6Argonne 
National Laboratory, Lemont, IL, USA.  e-mail: dylan.a.herman@jpmorgan.com

http://www.nature.com/natrevphys
https://doi.org/10.1038/s42254-023-00603-1
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-023-00603-1&domain=pdf
http://orcid.org/0000-0002-8721-7848
http://orcid.org/0000-0002-0756-164X
http://orcid.org/0000-0001-5066-2254
mailto:dylan.a.herman@jpmorgan.com


Nature Reviews Physics | Volume 5 | August 2023 | 450–465 451

Review article

current quantum hardware is still in a nascent stage; existing noisy 
intermediate-scale quantum devices have low fidelity and a small 
number of qubits, which severely limits the size of problems that can 
be solved. As a result, executing quantum circuits on hardware often 
requires a significant optimization effort at both the circuit-design and 
compilation levels and relies on classical computing to find optimal 
initial conditions and for error mitigation. These challenges hint at 
research opportunities in addressing the bottlenecks of end-to-end 
quantum applications and the design of hardware-aware quantum 
algorithms. In addition, more opportunities may be discovered in 
exploiting the rich structures in financial problems when searching for 
a quantum speedup, introducing new heuristics for computationally 
hard problems and improving classical heuristic algorithms.

In this Review, we survey the state of the art of quantum algorithms 
for financial applications. We discuss important financial problems that 
are solved using techniques from stochastic modelling, optimization 
and ML. For each of these areas, we review the classical techniques 
used and discuss whether the associated quantum algorithms could be 
useful. We also discuss the associated implementation challenges and 
identify potential research directions. Table 1 is a high-level overview 
of the quantum algorithms covered in this Review. We note that similar 
tables summarizing quantum algorithms for finance from different 
perspectives are also present in previous reviews4,5.

There is an existing line of reviews of quantum computing for 
finance. For example, ref. 4 focuses on covering the hardware and algo-
rithmic work done by IBM. The article in ref. 6 focuses on works done by 
the QC Ware team. The survey in ref. 5 highlights financial applications 
that make use of quantum annealers, while also providing a short over-
view of certain aspects in quantum ML and quantum MCI (QMCI) for 
finance. Reference7 covers various quantum ML algorithms applicable 
to finance. There are also several problem-specific surveys such as the 
derivative pricing8, supply chain finance9 and high-frequency trading10. 
In contrast to these works, this Review takes a more holistic view and 
discusses a wider variety of financial applications and more recent 
quantum algorithms. There has been significant progress in using 
quantum-inspired approaches for finance, and although a review of 
this line of work is beyond the scope of the current article, we do briefly 
mention quantum-inspired algorithms in the context of dequantized 
quantum algorithms in the ‘Machine learning’ section. We also direct 
the reader to existing surveys on other quantum-inspired methods 
such as tensor networks for ML11,12, which have been applied to finance13.

We assume some familiarity with quantum computing and 
applied mathematics; otherwise, we direct the reader to the standard 
introductory texts in quantum computing14,15 and mathematical 
finance16,17.

Stochastic modelling
Stochastic processes are commonly used to model phenomena in 
physical sciences, biology, epidemiology and finance. In the latter, 
stochastic modelling is often used to help make investment decisions, 
usually with the goal of maximizing returns and minimizing risks  
(see ref. 18 for an introduction). Quantities that are descriptive of the mar-
ket condition, including stock prices, interest rates and their volatilities, 
are often modelled by stochastic processes and represented by random  
variables. The evolution of such stochastic processes is governed by 
stochastic differential equations (SDEs), and stochastic modelling aims 
to solve SDEs for the expectation value of a certain random variable of 
interest, such as the expected payoff of a financial derivative at a future 
time, which determines the fair value of the derivative.

Key points

•• Quantum algorithms for stochastic modelling, optimization and 
machine learning are applicable to various financial problems.

•• Quantum Monte Carlo integration and gradient estimation can 
provide quadratic speedup over classical methods, but more work 
is required to reduce the amount of quantum resources for early 
fault-tolerant feasibility and achieving an actual speedup.

•• Financial optimization problems can be continuous (convex or 
non-convex), discrete or mixed, and thus quantum algorithms for these 
problems can be applied.

•• The advantages and challenges of quantum machine learning for 
classical problems are also apparent in finance.

Introduction
Financial institutions tackle a wide array of computationally challeng-
ing problems on a daily basis. These problems include forecasting 
(ranging from pricing and risk estimation to identifying anomalous 
transactions and customer preferences) and optimization (such as 
portfolio selection, finding optimal trading strategies and hedging). 
Owing to the advances in mathematical finance and computational 
techniques, with contributions from the financial industry and the 
scientific community, financial institutions have adopted a diverse 
set of problem-solving tools using stochastic modelling1, optimization 
algorithms and machine learning (ML) models for attacking both cat-
egories. In recent years, there has been increasing interest from both the 
academia and the industry in exploring whether quantum computing 
could be used to solve classically challenging problems. Researchers 
and industry practitioners have developed various quantum computing 
algorithms for each of the aforementioned problem-solving tools2. For 
example, the quantum algorithm for Monte Carlo integration (MCI) 
has shown promise for a quadratic speedup in convergence compared 
with the classical counterpart; this can greatly improve risk modelling, 
in which MCI3 is an indispensable tool. In optimization and ML, recent 
studies have demonstrated the advantages of quantum algorithms for 
discrete optimization, dynamic programming, boosting and cluster-
ing, showing polynomially better complexity dependence on certain 
dimensions of the size of the problem than the state-of-the-art classical 
algorithms. In addition, various heuristic approaches (which often 
use a classical–quantum hybrid methodology involving variational 
quantum circuits) have been developed and heavily investigated. Pre-
liminary results have shown indications of improvements provided by 
these heuristics over classical approaches. As most of these algorithms  
have general applicability to a broad category of problems, they also have  
similar potential in financial applications.

Notwithstanding the notable advances in quantum algorithms, 
there are still many challenges in achieving end-to-end quantum 
advantages on problems with commercially relevant specifications. 
In particular, a large amount of work needs to be carried out to reduce 
the resource requirements in certain components of the algorithms, 
such as quantum embedding of classical input data, readout of the 
quantum output and pre-processing and post-processing. Otherwise, 
the complexity of these components may significantly disparage the 
speedup obtained from other components of the algorithm. Moreover, 
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Although analytical solutions for SDEs are available for a few sim-
ple cases, such as the geometric Brownian motion used in the Black–
Scholes model for a European option19, the vast majority of financial 
models involves SDEs of more complex forms that can only be solved 
with numerical approaches. Moreover, even in cases in which the SDE 
can be analytically solved, the complexity of the payoff specifications 
of the derivative may make it difficult to find closed-form exact solu-
tions for moments of the payoff beyond the simplest cases of Euro-
pean options and certain Asian options20. Such more complex payoff 
types include American options and barrier options. If the desired 
moments of the stochastic process can be expressed as a manageable 
differential equation, one numerical approach is to use high-precision 
non-randomized methods for approximately solving differential equa-
tions. The high precision comes at the cost of a strong dependence  
on the dimension of the stochastic process. Alternatively, one may use 
MCI to trade precision for a much weaker dependence on the dimension 
through the variance of the stochastic process. In fact, the integrals 
computed for financial problems typically involve stochastic processes 
whose variances do not grow exponentially with dimension as it can in 
the more general case. The duality between directly solving the partial 
differential equation (PDE) governing the evolution of moments and 
estimating it through sampling has been exemplified in the Feynman–
Kac formula21,22. Both approaches are widely applicable even outside 
stochastic modelling and have sparked off developments in corre-
sponding quantum methods. In the following sections, we overview 
financial applications that could benefit from quantum versions of 
numerical methods for estimating moments and other deterministic 
functions of stochastic processes.

Quantum methods for Monte Carlo-based pricing and risk 
analysis
An important type of asset-pricing problem in finance is the pricing of 
derivatives. A derivative is a contract that derives its value from another 
source (such as a collection of assets or financial benchmarks) called 
the ‘underlying’, whose value is modelled by a stochastic process. The 
value of a derivative is typically calculated by simulating the dynam-
ics of the underlying and computing the payoff accordingly. At each 
time step, the payoff function computes the cash flow to the owner of 
the contract, given the current and potentially historical states of the 
underlying assets. The payoff is a simple function that is determined 

when the derivative contract is made. The fair-value price of the deriva-
tive is given by the expected future cash flows, or payoffs, discounted 
to the current date.

Classically, one could simulate the payoff stochastic process using 
a model and estimate the price of the derivative with sample means. 
This is the MCI approach3, which makes no assumptions about the 
underlying model and can handle high-dimensional financial problems. 
In accordance with Chebyshev’s inequality, the number of required 
samples from the model to achieve an estimation-error ε scales as 
O(σ2/ε2), where σ2 is the variance of the payoff process. However, there 
exists a quantum algorithm, commonly known as QMCI, that can pro-
duce an ε-estimate of the price using O(σ/ε) quantum samples with a 
constant success probability23–27. Specifically, suppose with probability 
p(ω), the state of the underlying follows a trajectory ω ∈ Ω from an 
initial point in time to the maturity of the contract, and additionally 
suppose that f(ω) is the payoff function scaled to be in [0, 1], then the 
following operation gives a single quantum sample:

∑Q f ω p ω ω00 = ( ) ( ) 1 + � , (1)
ω∈Ω

which is produced by a unitary operator Q, and �  is an unnormalized 
orthogonal garbage state produced owing to unitarity. The vanilla 
QMCI uses quantum amplitude estimation (QAE) to estimate the prob-
ability of observing the rightmost qubit in the ∣1�  state. A necessary 
condition for a practical quantum advantage is that Q is implementa-
ble in a time comparable to the time to generate a classical sample from 
p(ω). In addition, it has been noted that the overhead from current 
quantum error-correcting codes could prevent the quadratic speedup 
from being realizable28. The good news is that the payoff functions in 
most derivatives have simple forms such as piece-wise linear functions 
and therefore can be implemented using reversible-arithmetic 
techniques29. Furthermore, there are variants of QAE with reduced 
circuit depth30–32.

To implement Q, various techniques have been developed. Specifi-
cally, the Grover–Rudolph algorithm33 and its approximate variant34 
aim to address loading distributions that are efficiently numerically 
integrable (for example, log-concave distributions). However, it has 
been shown that, when numerical methods, such as classical MCI, 
which we are trying to avoid, are used to integrate the distribution, 

Table 1 | Quantum algorithms for financial problems

Methodology Applications Algorithms Challenges Advantages Applicability

Stochastic modelling Pricing
Risk modelling

Quantum Monte Carlo 
integration

Model loading Quadratic speedup Long term

Quantum PDE solvers Pre-processing and 
post-processing

Unclear Long term

Optimization Portfolio management
Financing
Resource allocation

Quantum-enhanced SCP 
solvers

QBLAS limitations Unclear Long term

Quantum-enhanced MIP 
solvers

Oracle complexity Quadratic speedup Long term

Quantum heuristics Parameter tuning Partial evidence Near term

Machine learning Forecasting
Anomaly detection
Recommendations

Quantum-enhanced ML Data loading Unclear Long term

Quantum-native ML Parameter tuning and/or 
sampling complexity

Unclear Near term

MIP, mixed integer programming; ML, machine learning; PDE, partial differential equation; QBLAS, quantum basic linear algebra subroutine; SCP, symmetric cone program.
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QMCI does not provide a quadratic speedup when using this state 
preparation technique35. For loading general L1 or L2 normalized func-
tions, a number of black-box state preparation techniques have been 
proposed36–40. These algorithms start by preparing the target state with 
a success probability and then use amplitude amplification to boost 
that probability. Despite the general applicability of these algorithms, 
their inverse dependence on the filling ratio (the relevant norm of the 
function divided by the corresponding norm of the box bounding 
of that function) of the function being loaded makes these algorithms 
much less efficient when the target distribution is concentrated around 
a few values. An approximate method that loads degree-d polynomial 
approximations of functions has been proposed in ref. 41, which has 
a similar dependence on the filling ratio. Alternatively, one could use 
data-driven methods, such as variational quantum algorithms42, which 
can be trained to load the path distribution43,44. Non-unitary distribu-
tion loading approaches have also been proposed45,46, although it is 
still an open question how these methods can be integrated into QMCI. 
For loading tabulated data, one has to resort to generic data loading 
techniques47–49, which in general scale linearly with the number of data 
points to be loaded.

Furthermore, rather than loading the full payoff distribution p(ω) 
directly, it may be easier to load the joint distribution over path incre-
ments and use arithmetic to introduce any necessary correlations50. 
Nevertheless, this approach requires a number of qubits that scale line-
arly with the number of time steps, and quantum arithmetic operations 
can be expensive to perform. Therefore, it remains an open question 
whether there are alternative unitary procedures for loading the payoff 
distribution that avoid significant arithmetic and have sublinear scal-
ing in the number of qubits. For scenarios in which the SDE can only be 
simulated approximately, that is, when using local-volatility models51, 
the discretization in time may introduce an additional multiplicative 
factor of O(1/ε) to the overall complexity of the MCI algorithm52. To 
address this issue, the multilevel MCI53 was proposed, which ensures 
that the overall algorithm still scales as single-time-step MCI up to 
a polylogarithmic factor under certain assumptions on the payoff 
function. This approach has been quantized in ref. 54 with similar 
guarantees and extended to other payoff functions.

There is a deterministic classical method known as quasi-MCI, 
which for low-dimensional problems obtains a similar error scaling as 
QMCI. However, this comes at the cost of an exponential dependence 
on the dimension. Interestingly, for reasons not fully understood, this 
exponential dependence does not appear in practice for some financial 
problems (in section 5.5 of ref. 3). Thus, a similar classical quadratic 
speedup can be obtained in some settings.

Because of the provable speedup in query complexity that QMCI 
provides for the widely used MCI method, it is not surprising that the 
community has started to perform application-specific resource analy-
sis for the pricing of various types of derivatives, such as European55 and 
Asian56 options, autocallable and target accrual redemption forward50.

For some derivatives, evaluating the expected payoff may be 
affected by future decisions, which can significantly complicate the 
pricing process. An important example of such derivatives is an Ameri-
can option. An American call option gives the holder the right to buy 
the underlying asset at a fixed price K (strike) at any time between today 
(t = 0) and the maturity date (t = T). At each time point t ∈ [0, T], the 
holder must decide whether to exercise the option by comparing  
the payoff S Kmax( − , 0)t  if exercised today, where St is the price of the 
underlying asset at t, with the expected payoff if exercised later. Ameri-
can option pricing falls under the broader class of optimal stopping 

problems. The exact solution of the value of an American option 
requires dynamic programming, because determining whether to 
exercise at t requires solving the subproblem of determining the future 
expected payoff from exercising after t, called a continuation value. 
For a more detailed discussion on dynamic programming, we refer the 
readers to the next section. In finance, American option pricing is typi-
cally solved approximately by using regression to predict continuation 
values and computing the stopping time by backtracking from the 
maturity point. This technique is called least-squares Monte Carlo57. 
The labels used for training the regression model are typically 
computed using MCI, and there are versions that use QMCI58.

Another important task often accompanying derivative pricing 
is the computation of sensitivities of the derivative price to model and 
market parameters, which is equivalent to computing gradients of the 
price with respect to these input parameters. Such gradients are often 
known as the ‘Greeks’. Greeks allow for systematically hedging against 
risks associated with holding a derivative contract under market move-
ments and hence are a vital tool in risk management. Classically, Greeks 
can be computed by ‘bump-and-reprice’, which combines finite differ-
ence with MCI. Under certain continuity conditions of the payoff func-
tion with respect to the input parameter of interest, and when the MCI 
is performed using common random numbers, Greeks computed using 
bump-and-reprice can attain the same mean-squared error conver-
gence in terms of the number of samples used in MCI (in chapter 7 of 
ref. 3). Consequently, the number of samples required to compute  
k Greeks with an ε accuracy is O(kσ2/ε2). Using quantum gradient 
methods59, ref. 60 proposed a quantum acceleration of the classical 
bump-and-reprice method for computing Greeks, achieving a quad-
ratic reduction in the number of samples required with respect to both 
k and ε, resulting in a sampling complexity of O k σ ε( / ).

When computing Greeks, under certain smoothness conditions, 
one can move the differentiation operation inside the expectation and 
instead compute the sample average of path-wise derivatives, that is, 
derivatives of the random variable on a fixed realization of the stochas-
tic process. Various derivative payoffs satisfy such conditions, and 
smoothing techniques can be applied to payoffs with singularities61. 
On a classical computer, path-wise derivatives can be computed ana-
lytically using automatic differentiation (AD)62, which scales with the 
logarithmic error dependence of arithmetic. In particular, the adjoint 
mode of AD allows for the computation of k gradients of a function with 
a cost (in terms of the number of function evaluations) independent 
of k, which provides a more efficient way of computing Greeks when 
the number of Greeks is large. On a quantum computer, AD may also 
be performed using reversible arithmetic. As noted in ref. 60, when 
AD is used, one could use QAE to speed up the error convergence. 
Furthermore, one could utilize neural networks combining AD with 
back-propagation to simultaneously learn the integral and its partial 
derivatives63. Although the advantage of using a neural network is 
unclear at the moment, if the neural network can learn both the price 
and the Greeks at once requiring only o(σ2/ε2) training samples, it would 
be superior to bump-and-reprice. Unfortunately, current architectures 
for quantum neural networks (QNNs) pay a classical sampling cost 
when computing gradients, that is, using the parameter-shift rule64, 
which makes quantum advantage unlikely.

In addition to pricing and Greeks computation, MCI is also widely 
used in computing other risk metrics that involve the estimation of 
expected quantities from a stochastic process. Similar to derivative 
pricing, QMCI can be applied to these tasks leading to a potential 
quantum speedup. Specifically, quantum methodologies based on 
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QMCI have been demonstrated for the computation of value-at-risk65 
and credit risk66.

Quantum methods for differential-equation-based pricing 
and risk analysis
As mentioned earlier, the expectation of certain random variables, 
whose evolution is described by SDEs, can be formulated as the solu-
tion to parabolic PDEs. This connection between SDEs and PDEs allows 
one to study stochastic processes using deterministic methods. One 
common numerical technique for solving PDEs is the finite-difference 
method, which approximately transforms the differential equation 
into a system of linear equations on discretized grid points67. In ref. 68, 
a finite-difference method-based approach combined with quantum 
linear systems algorithms (QLSAs) was used to solve the multi-asset 
Black–Scholes PDE. Although under various assumptions about the 
conditioning of the linear systems and data-access model, the quan-
tum linear system can be solved with an exponential reduction in the 
dependence on the dimension, a sampling cost needs to be paid to 
readout the solution from the quantum state, making this technique 
reminiscent of classical and quantum MCI. Nevertheless, it may still 
be beneficial to choose PDE solving methods over MCI, as it has been 
shown that the former can have better convergence on certain errors 
caused by the discretization in time, for example, when pricing barrier 
options69.

For second-order linear PDEs, it is possible to transform the PDE 
into a form that resembles the Schrödinger equation and use Hamil-
tonian simulation techniques to simulate the dynamics generated by 
such PDEs. If the resulting evolution is non-unitary, a block encoding59 
may be necessary to convert it into a unitary evolution. It has been 
shown that if all eigenvalues of the evolution matrix are known, then 
an exponential speedup can be achieved in simulating the Hamilto-
nian dynamics compared with classical methods70–74. However, as the 
solution of the PDE is encoded in a quantum state, QMCI, or QAE, is 
still needed to obtain the desired quantity from the PDE solution, thus 
adding additional overhead.

Variational quantum simulation (VQS) can also be used to simu-
late the solution for certain PDEs as the evolution of a quantum state. 
Reference75 showed that this could be done for the Black–Scholes PDE. 
Then ref. 76 extended the approach to the more general Feynman–Kac 
PDEs and variants and also discussed the potential applicability to the 
pricing of American options (that is, the Hamilton–Jacobi–Bellman 
equation) and models with stochastic volatility. Reference77 used VQS 
to simulate the trinomial-tree model78 for solving SDEs and proposed 
a methodology for computing the expectation values of random 
variables from the SDE.

The aforementioned algorithms encode the solution into a quan-
tum state such that the computational basis states denote the discre-
tized values of the spatial variable and the amplitudes are proportional 
to the corresponding values of the function. Reference79, however, 
proposed an alternative approach that uses a QNN as a parameterized 
ansatz for the PDE solution. The variational parameters are updated 
through gradient descent to satisfy the PDE. One thing to note about 
this approach79 is that the input data are encoded into a product state. 
This potentially allows one to implement a more expressive version 
of the model using classical kernel methods80. However, it is believed 
that variational quantum models can introduce a regularization not 
accessible to kernel methods81, still making QNNs that encode the input 
data into a single product state potentially useful. Although VQS and 
QNNs are often less resource-intensive than QLSAs, without further 

experimentation it remains unclear whether there is any quantum 
advantage from these heuristic techniques.

Optimization
In this section, we discuss the potential of using quantum algorithms to 
help solve various optimization problems that are prevalent in finance. 
Most financial optimization problems are typically highly constrained 
linear or quadratic programs with continuous variables, discrete vari-
ables or both. Quantum computing provides various heuristics and 
algorithms for tackling such problems. In the sections that follow, we 
review the various categories of financial optimization problems and a 
multitude of quantum algorithms that are applicable to such problems; 
we discuss whether they could actually be useful.

Quantum methods for continuous optimization
In continuous optimization, the problem decision variables are 
real-valued. Convex programming82 is one area of continuous opti-
mization for which there exist various efficient classical algorithms 
for structured problems83. Notable examples of structured convex 
problems84 are symmetric cone programs (SCPs), such as linear pro-
grams (LPs), second-order cone programs (SOCPs) and semidefinite 
programs (SDPs), which frequently appear in financial applications. 
Financing or cash-flow management and arbitrage detection are 
examples of important financial linear optimization problems. In a 
short-term financing problem (in chapter 3 of ref. 85), the goal is to 
select cash flows — for example, assets with fixed return rates, or lines 
of credit — to match periodic quotas while maximizing assets. As the 
amount of cash flow or credit obligation is directly proportional to  
the amount held, the various problem constraints are linear.

Portfolio optimization is the process of selecting the best set of 
assets and their quantities from a pool of assets being considered 
according to some predefined objective. The objective can vary 
depending on the preference of an investor regarding financial risk 
and expected return. The modern portfolio theory86 focuses on the 
trade-offs between risk and return to produce what is known as an 
efficient portfolio, which maximizes the expected return given a certain 
amount of risk. This trade-off relationship is represented by a curve 
known as the efficient frontier. The expected return and risk of a finan-
cial portfolio can often be modelled by looking at the mean and vari-
ance, respectively, of portfolio returns. The problem setup for portfolio 
optimization can be formulated as constrained utility maximization:

F
µµ qxx xx xxmax − Σ (2)

xx∈

T T

over some feasible set of portfolios, F . In portfolio optimization, xx is 
the vector of asset allocations, Σ is the covariance or correlation matrix 
of the assets, µµ is the vector of expected returns and q is a scaling factor 
that represents risk-adverseness. The signs of the problem variables, 
xx, can also be used to indicate long or short positions. The problem is 
typically highly constrained. For example, a weight may be assigned 
to each asset class, such as stocks, bonds, futures and options, restrict-
ing the proportion of each in the portfolio. Assets within each class are 
then allocated according to their respective risks, returns, time to 
maturity and liquidity, during which additional constraints may apply. 
In this section, we consider cases in which the variables are 
continuous-valued, but F  can be non-convex. The discrete case is 
addressed in the following section. As most classical and quantum 
algorithms for continuous optimization target convex problems, 
specifically SCPs, we also mainly focus on that.
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Considering that SCPs can be solved very efficiently classically, 
there is a small margin for quantum speedup in practice. Still, quantum 
reductions have been observed in worst-case running times in terms 
of the problem dimension owing to the existence of fast quantum 
algorithms for basic linear algebra subroutines (BLASs). However, 
a quantum BLAS (QBLAS)59,87 comes with three notable caveats that 
make it challenging to compare quantum and classical worst-case 
complexities. First, a QBLAS operates on the spectrum of matrices and 
thus has polynomial dependence on the conditioning of the matrix, 
which classically typically appears only in iterative algorithms. Second, 
retrieving data from a quantum device requires sampling and conse-
quently incurs a classical sampling cost that depends poorly on the 
desired error. Finally, the algorithms require access to the classical data 
in quantum superposition, which can only be done efficiently without 
quantum memory in certain cases when the input matrices are sparse.

Classical techniques for solving SCPs fall into two categories: those 
with better dependence on the problem size and those with better 
dependence on the error in the solution. The first category is mainly 

dominated by the matrix multiplicative-weight (MMW) meta- 
algorithm88. It can be shown that the complexity for general SDP solving 
is89 O mnsγ nsγ( + )4 7∼

, where m is the number of constraints, n is the 
number of variables, s is the sparsity and γ is a function of the desired 
error. The notation O ( )∗∼

 ignores factors of the form O(polylog(∗)) in 
the complexity. Currently, the best quantum version of MMW for gen-
eral SDP solving, in ref. 90, has complexity 

∼
O s m γ s n γ( + )4 5 , in terms 

of number of gates and calls to an oracle that provides matrix elements. 
This has the optimal dependence on m and n one can hope for in gen-
eral. However, when fine-tuned to the SDP relaxation of the MaxCut 
problem, for certain graphs, the classical MMW algorithm runs in 

∼
O m( ). 

As MMW already depends poorly on the desired problem error and 
assumes sparse matrices, quantum MMW may not suffer from the 
caveats of QBLASs. Although MMW has not been extensively studied 
for solving SCPs in finance, the scalar multiplicative-weights update 
method91, which is a special case of MMW, has. The scalar 
multiplicative-weights method is applicable to online portfolio 
optimization92 — an example of online convex optimization93. Online 
portfolio optimization, in which the algorithm adapts its portfolio 
selection as the market changes, has received attention from the 
quantum computing community94.

The scalar multiplicative-weights framework has also been used 
to produce sublinear algorithms for estimating Nash equilibrium of 
two-player zero-sum games95, a type of matrix game over simplices. 
Quantum algorithms for Gibbs sampling have been used to pro-
duce quadratic reductions in the dimension dependence for solving 
zero-sum games96,97. These algorithms have been applied to the task 
of estimating a martingale measure from market data and deriva-
tive pricing98. Furthermore, quantum amplitude amplification has 
been used to provide a quadratic reduction in dimension depend-
ence over classical sublinear algorithms for a more general class of 
matrix games99 solved with multiplicative weights and online mirror 
descent in a primal-dual fashion100, with applications to training kernel 
classifiers101. Online mirror descent is a generalization of the scalar 
multiplicative-weights framework.

The second category of algorithms, called the polynomial-time 
methods, consists of the interior-point methods (IPMs) and cutting 
planes. In theory, the fastest method in this category for solving gen-
eral SDPs is based on cutting planes102, whereas IPMs are the fastest for 
LPs103 and SOCPs104. References105,106 use QBLASs, for example, QLSAs, 
to perform Newton’s method, which is a common IPM subroutine. 
For all three conic programs, the explicit dependence on the problem 
dimension is superior to the fastest classical algorithms. Unfortunately, 
these quantum IPMs suffer from all three aforementioned caveats  
with QBLASs. Classical IPMs can be implemented in polynomial time with  
logarithmic dependence on the conditioning of the matrix, that is, 
through classical arithmetic. The classical sampling cost that the quan-
tum algorithm pays effectively negates the good error dependence of 
classical IPMs and only solves the Newton system approximately. It was 
shown that this results in the quantum IPM only solving an approxi-
mation of the original optimization problem105. Proposals have been 
made to use variants of the standard classical IPM that may be better 
candidates for quantization107 and combat some of the issues brought 
up. Still, resource estimates for simple portfolio optimization problems 
indicate a lack of advantage with quantum IPMs108.

Although not a polynomial-time algorithm, the simplex method 
is very fast in practice for solving LPs for which quantum algorithms 
for various subroutines have been proposed109. Also, QLSAs have been 
directly applied to portfolio optimization problems in the case with 

Glossary

Autocallable
A financial product that pays the  
holder a high return if the value of  
the underlying asset passes an upside 
barrier.

Black–Scholes model
A mathematical model for the dynamics 
of a financial market containing 
derivative investment instruments.

Bump-and-reprice
A method to estimate the sensitivity of 
the price of a financial derivative with 
respect to an underlying parameter 
by evaluating the price at different 
values of the parameter and taking the 
difference.

Financial derivative
A financial contract that derives its value 
from the performance of an underlying 
entity.

Hamilton–Jacobi–Bellman 
equation
An equation that gives a necessary and 
sufficient condition for optimality of a 
control with respect to a loss function.

Martingale measure
A probability measure such that the 
conditional expectation of a random 
variable in a sequence given the 
value of a random variable prior in the 
sequence is equal to the value of this 

prior random variable on which the 
expectation is conditioned.

Option
A financial contract that gives the 
holder the right, but not the obligation, 
to buy or sell an underlying asset at an 
agreed-upon price and time frame.

Target accrual redemption 
forward
A financial product that allows the 
holder to achieve a target rate (interest 
rate, exchange rate and so on) or rate 
range on a pre-defined schedule (for 
example, monthly) up to a limit on the 
maximum payout and under certain 
conditions on the extreme values of the 
rate observed in the market (spot rate). It 
achieves this goal by paying the holder a 
positive amount if the spot rate is higher 
than a target value and negative if lower, 
until the maximum amount of accrual 
has been reached or the spot rate hits 
certain upper and/or lower barriers.

Vapnik–Chervonenkis (VC) 
dimension
A measure of the capacity of a set 
of functions that can be learnt by 
a statistical binary classification 
algorithm, defined as the cardinality of 
the largest set of data points that the 
algorithm can always learn a perfect 
classifier for an arbitrary labelling.
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linear equality constraints, in which the solution can be obtained in 
closed form by solving a linear system110,111. Besides suffering from the 
general issues with QBLASs, the overall benefits of these approaches 
remain indeterminate owing to their limited applicability.

Currently, it seems to still be an open question whether quantum 
computation can provide an advantage for structured convex pro-
grams in general and not just finance. However, for well-conditioned 
problems with sparseness or access to sufficient quantum memory, 
there may be speedups realizable on practical problems. However, 
these problems can already be solved fast with classical computation.

In the continuous, non-convex setting, it has been demonstrated 
that convex relaxations may exist for some financial problems, leading 
to comparable performance as global optimizers, but with significantly 
reduced computational cost. In particular, tax-aware portfolio optimi-
zation is a variant of the standard modern portfolio theory problem 
that accounts for tax liabilities. Although the tax penalty term in the 
cost function is non-convex, numerical evidence shows that a convex 
relaxation to an SOCP can result in a solution quality nearly identical 
to that from exact solvers112. Similarly, sparse portfolio optimization, 
which imposes a constraint on the number of nonzero allocations in the 
solution, admits an SOCP relaxation that provides fast and relatively 
accurate solutions for some asset classes113. For quantum algorithms, 
there has been work demonstrating speedups for certain continuous, 
non-convex landscapes114 as well as developing and benchmarking 
quantum analogues of gradient descent115.

Quantum methods for discrete optimization
Many optimization problems in finance require that the solutions 
take values from a discrete set, as opposed to a continuous spectrum. 
Examples include some of the most commonly seen optimization 
problems in finance, such as portfolio optimization also discussed in 
the previous section. In many portfolio optimization problems, the 
optimal solution from a convex optimization may suggest the alloca-
tion of fractional units of an asset, whereas market constraints often 
require that the positions on these assets are integers or multiples of 
a fixed increment. These financial use cases call for discrete optimi-
zation methods or integer programming, in which the variables to 
optimize are restricted to integers, and more generally, mixed integer 
programming (MIP), in which some of the variables are integers. For 
the unfamiliar reader, an introduction to discrete optimization can be  
found in ref. 116.

One approximate approach for solving MIP problems is to convert 
the MIP into a continuous optimization problem by relaxing the integer 
constraints and then round the solution to the nearest feasible values 
allowed by the integer constraints. Specifically, for a mixed integer 
linear programming problem, one may apply linear programming 
relaxation to remove all integer constraints. In the more general case, 
convex hull relaxation may be used in which the feasible set of solu-
tions is replaced by the minimal convex set that contains the feasible 
set. In portfolio optimization problems, in which typical values of the 
asset positions are much larger than the minimum allowed increment, 
approximated optimal solutions through relaxation are often accept-
able with minor modifications. This is usually the case with portfolios of 
stocks, in which the minimum holding size is one share and the holding 
sizes are usually at least two orders of magnitude larger. However, the 
fixed-income and derivatives markets usually require a much larger 
unit trading size, which makes the approximate solutions from the 
relaxed problem of unsatisfactory quality. Therefore, these problems 
often have to resort to discrete optimization techniques.

Branch-and-bound (B&B) methods form a powerful class of algo-
rithms for solving hard optimization problems, such as MIPs, and can 
provide either a certificate of optimality or an optimality gap117. The 
optimality gap is the difference between the best-known solution and 
a known bound. B&B is the core algorithm in the majority of commer-
cial solvers and is thus commonly adopted by financial institutions. 
At a high level, a B&B algorithm constructs a tree of subproblems, 
for example, convex relaxations in the case of MIP, whose solutions 
represent bounds on a possible solution to the non-relaxed problem 
one could hope to obtain. Subroutines based on heuristics are used 
for searching subproblems to solve, specifically leaves in a tree, and 
prune them when possible, as the tree can be exponentially large in  
problem size.

Quantum walk search (QWS)118 is a powerful framework for speed-
ing up classical search algorithms and has been applied to important 
optimization algorithms used in finance. It also worth noting that the 
overarching framework of quantum walks enables an at most quad-
ratic reduction in the time to simulate symmetric Markov chains119, 
which is potentially applicable to simulating stochastic processes 
arising in finance. Reference120 developed QWS-based techniques, 
which provide an almost quadratic speedup for tree search in terms 
of the size of the tree. However, this does not allow the integration of 
search heuristics or early stopping, both of which have been found to 
significantly boost the performance of classical algorithms on typical 
problem instances. Advances have been made in this direction to inte-
grate depth-first search heuristics121 and, more recently, a large class 
of practical heuristics122. However, similar to the case of quantum MCI 
for stochastic modelling, it is unclear whether an actual reduction in 
the time to solution could be achieved when considering the resources 
required to solve the subproblems.

Simulated annealing (SA)123 is a widely used Markov chain Monte 
Carlo (MCMC) method124 for combinatorial optimization. Quantum 
walks have been used to quadratically reduce the spectral-gap depend-
ence of the asymptotic convergence time to an exact solution125–127. 
However, it is still unclear whether, in general, the dependence on 
all parameters with quantum can be made better than or even match 
the dependence they have with classical MCMC128. Furthermore, clas-
sical SA is typically used as a heuristic and not run until the Markov 
chains have converged to their stationary distributions129,130. Still, 
ref. 131 has investigated the use of quantum SA as a heuristic as well as 
designed gate-efficient constructions for implementing the quantum 
walk operator.

A framework132–134 was developed on the basis of Grover’s algorithm135,  
which is a special case of QWS that makes use of global problem infor-
mation for unstructured optimization. This algorithm was subse-
quently generalized in ref. 89 to allow for arbitrary priors over the 
search space. The unstructured search framework requires the abil-
ity to query oracles for evaluating the function to optimize and the 
various constraints. Although providing a quadratic speedup in query 
complexity, over classical unstructured search, quantum unstructured 
search is not as resource-efficient as quantum-walk-based techniques, 
which rely on local, as opposed to global, information136. In the case of 
discrete optimization, uniform superpositions over the unconstrained 
search space can be prepared with low gate complexity, and for NP 
optimization problems the oracles for checking the constraints and 
evaluating the cost function can be implemented with an efficient 
gate complexity137.

Finally, there is also the short-path algorithm138,139, which makes 
use of techniques from quantum-walk literature, and takes advantage 
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of problem-specific information to achieve speedups that are superior 
to Grover-based algorithms for some discrete optimization problems.

In addition to the various quantized versions of classical algo-
rithms, there are quantum heuristic algorithms140. These consist 
of quantum annealing141–143 and variational quantum algorithms: 
the quantum approximate optimization algorithm (QAOA)144,145,  
variational quantum eigensolver (VQE)146,147 and VQS148–150. In general, 
these methods can naturally handle unconstrained binary optimiza-
tion problems, but have also been applied to continuous optimization 
problems151,152. It is possible to efficiently restrict the evolution of these 
quantum heuristics to respect binary-variable constraints145,153–156, at 
least when implemented on a universal digital quantum computer.

Variational quantum algorithms usually suffer from difficulties in 
tuning the variational parameters and hyperparameters, which by itself 
can be NP-hard157. In addition, for certain initializations, the gradients 
with respect to the parameters can vanish even when the model is far 
from convergence158,159, requiring exponentially many samples to esti-
mate them. Still, the convergence of VQE has been demonstrated in the 
over-parameterized regime160, even with exponentially small gradients.

Although existing quantum annealing devices are large scale and 
do not need to meet the error-tolerance requirements of universal 
devices, the overall benefit of quantum annealing is yet to be deter-
mined. Quantum tunnelling can allow for penetrating tall, thin poten-
tial barriers161. However, it is not possible to know a priori whether the 
potential barriers that appear in a practical problem permit tunnelling. 
For highly constrained financial optimization problems with multiple 
types of variables, it is often costly to transform the problem into an 
unconstrained quadratic binary optimization problem, especially 
when the number of qubits is limited. Still, owing to the availability of 
relatively-large quantum annealers, the community has already begun 
experimenting with applications, such as portfolio optimization162–164 
and crash detection165.

Finally, in contrast to VQE and VQS, QAOA has been observed to 
have additional advantages, such as only using two parameters per layer 
and theoretical and numerical results showing the ability to transfer 
optimized parameters between problem instances166–168. Furthermore, 
in some instances, the parameter optimization can be performed 
efficiently classically using simulators of quantum circuits169–172. There 
is still a lot of work that needs to be done to better understand the 
performance of quantum heuristic algorithms, especially on financial 
optimization problems173.

Quantum methods for dynamic programming
In some optimization problems, the information needed to make sub-
sequent decisions is only revealed after intermediate decisions are 
made. Therefore, in such cases, decisions must be made in a sequential 
manner, and an optimal strategy must take into account both current 
and future decisions. Solving these decision-making problems often 
requires dynamic programming, in which a problem is solved recur-
sively by reducing the main problem into a series of smaller subproblems  
that are easier to solve.

Dynamic programming problems174 are also commonly seen in 
finance. In addition to the American option pricing problem mentioned 
in the first section, another important place where dynamic program-
ming appears in finance is in the structuring of collateralized mortgage 
obligations (CMOs) (in chapter 15 of ref. 85). A CMO bundles a pool of 
mortgages and rearranges their cash flows into multiple ‘tranches’ 
that are paid in sequence. The issuer of a CMO is often interested in an 
optimal payment schedule (structure) of these tranches to minimize 

the payment obligations to the CMO owners, which needs to be solved 
recursively as the optimal start and end times of the kth tranche depend 
on the optimal schedule of the preceding k − 1 tranches. Although, 
to the best of our knowledge, there have not been demonstrations 
of quantum solutions to the structuring of CMOs and other similar 
financial problems, quantum algorithms have been proposed for 
reducing the exponential dependence of exponential-time dynamic 
programming for various NP-complete problems175.

Machine learning
In this section, we discuss the potential of using quantum algorithms 
to help solve ML tasks that arise in various financial applications.  
The field of ML176,177 has become a crucial part of various applications 
in the finance industry. Rich historical financial data and advances in 
ML make it possible, for example, to train sophisticated models to 
detect patterns in stock markets, find outliers and anomalies in financial 
transactions, automatically classify and categorize financial news and 
optimize portfolios7,178.

Quantum algorithms for ML can be further divided into methods 
for accelerating classical techniques, typically by applying QBLASs, 
and quantum-native algorithms, which attempt to harness the classical 
intractability of quantum simulation to build more expressive models. 
The former typically requires an error-corrected quantum computer, 
whereas it is argued that the later may not and is more near term42. The  
methods for accelerating classical algorithms need to overcome  
the various limitations of quantum linear algebra addressed in the 
previous section. The most notable one being data loading, and unfor-
tunately, most of these algorithms work in a setting with quantum 
memory179,180. It is currently unclear whether such a device can be 
constructed. Furthermore, various approaches only provide speedups 
when the data have low-rank approximations, and in this setting, the 
speedup is not exponential as it was once thought. However, there 
remain some quantum ML algorithms that do not rely on this low-rank 
assumption and may remain impervious to dequantization181. Further 
research is needed to determine whether an exponential speedup of 
classical ML problems is still possible with quantum computing.

Quantum-native models, such as QNNs, quantum circuit Born 
machine (QCBM) and quantum kernel methods, circumvent the issues 
of QBLASs and can be intractable to classically simulate; however, it is 
currently unclear whether they provide advantage on classical prob-
lems. Specifically, although these methods can be more expressive, this 
has only been shown to provide advantage for problems involving data 
generated from quantum processes182. In addition, initial numerical 
evidence suggests that this does not extend to classical problems183. 
Parameterized quantum methods, such as QNNs, can be challeng-
ing to train in general158 and do not currently have back-propagation 
algorithms that are as efficient as those for classical NNs. Although, 
at the moment, quantum advantage on classical problems by using 
quantum-native methods appears to be unlikely, there is still significant 
algorithmic research that needs to be done to be certain. Further-
more, as quantum hardware advances, one will eventually be able to 
benchmark these heuristic algorithms on real-world problems.

In the following sections, we highlight quantum ML algorithms 
that could be applied to financial problems and hope to entice further 
research towards quantum advantage.

Quantum methods for regression
Regression is the process of fitting a numeric function from the training 
data set. This process is often used to understand how the value changes 
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when the attributes vary, and it is a key tool for economic forecast-
ing. For example, regression models can be used in asset pricing63,184 
and volatility forecasting185. Least squares is one of the most widely 
adopted regression models, and corresponding quantum algorithms 
have been proposed186–188. Moreover, quantum annealing has been 
used to solve least-squares regression when formulated as quadratic 
unconstrained binary optimization189. In addition to least squares, 
Gaussian process regression is another technique with applications 
in finance190, but it suffers from a slow classical runtime. Reference191 
proposed a QLSA-based algorithm that can obtain up to an exponential 
speedup for Gaussian process regression for certain sparse, high-rank 
kernels. Another study192 used a QNN with a quantum feature map that 
encodes classical input data into a unitary with configurable param-
eters. This technique is dubbed as quantum circuit learning192 and 
has been numerically shown to allow for a low-depth circuit, hence 
implying important application opportunities in quantum algorithms 
for finance.

Quantum methods for classification
Classification is the process of placing objects into predefined groups. 
This type of process is also called pattern recognition. This area of ML 
can be used effectively in risk management and large data processing 
when the group information is of particular interest, for example, in 
credit-worthiness identification193 and fraud detection194. There are 
many well-known classical classification algorithms, such as linear 
classification, support vector machine (SVM), nearest centroid and 
neural-network-based methods. Quantum algorithms could be used 
as subroutines to speed up existing classical algorithms. Alternatively, 
a quantum version of such algorithms could be developed. Both cases 
could potentially benefit financial applications. Sublinear quantum 
algorithms for training linear and kernel-based classifiers have been 
proposed195, which gives a quadratic improvement for training clas-
sifiers with constant margin. Reference196 proposed the quantum 
least-squares SVM, which uses QLSA. Reference106 proposed a quantum 
algorithm for SOCPs that was subsequently applied to the training of the 
classical ℓ1 SVM, realizing a small polynomial speedup through numeri-
cal experiments. In addition, classical SVMs using quantum-enhanced 
feature spaces to construct quantum kernels have been proposed197. 
Quantum nearest-neighbour classification algorithms based on Euclid-
ean distance198 and Hamming distance199 as the metric have also been 
investigated. Reference200 proposed using a quantum k maxima-finding 
algorithm to find the k-nearest neighbours and use the fidelity and 
inner product as measures of similarity . Various types of QNNs have 
also been applied to classification tasks201–203. Quantum algorithms that 
improve the complexity of inference or training of a classical neural 
network have also been developed204,205.

Quantum methods for boosting
Boosting algorithms206 use queries to a weak learning algorithm, which 
often produces models that classify or regress marginally better than 
a random guess, to construct a strong learner that can achieve an 
arbitrarily low prediction error. Adaptive boosting (AdaBoost)207 was 
the first boosting algorithm and can be viewed as an instance of the 
multiplicative-weights update method. One component that appears 
in the complexity of AdaBoost is a linear dependence on the Vapnik–
Chervonenkis (VC) dimension of the weak learners. Reference208 dem-
onstrated a quantization of the AdaBoost algorithm, which promises a 
quadratic reduction in the dependence on the VC dimension. However, 
this is at the cost of a significantly worse dependence on the margin over 

random guess. Reference209 quantized the Smooth boost algorithm210, 
which guarantees a similar quadratic reduction in the VC dependence, 
but with better margin dependence than ref. 208. A major limitation 
for both approaches is that they need to have access to quantum exam-
ples, which requires preparing quantum states encoding distributions 
over the training data. Finally, there is also the QBoost framework211, 
which proposes to use quantum heuristics for discrete optimization 
to select a linear combination of weak classifiers and has been applied 
to financial-risk detection212.

One very popular form of boosting is called gradient boosting213, 
of which a high-performance instantiation has been dubbed extreme 
gradient boosting (XGBoost)214. Currently, there does not appear to 
be any quantization of gradient boosting. Given the obvious general-
ity of boosting, these models have been applied to a wide variety of 
ML applications in finance. Particularly, boosting has been applied to 
forecasting, such as derivative pricing215, financial-crisis prediction216, 
credit-risk assessment217 and volatility forecasting218.

Quantum methods for clustering
Clustering, or cluster analysis, is an unsupervised ML task. It explores 
and discovers the grouping structure of the data. In finance, cluster 
analysis can be used to develop a trading approach that helps investors 
build a diversified portfolio219. It can also be used to analyse different 
stocks, such that the stocks with high correlations in returns fall into 
one basket220. Classically, there is the k-means clustering algorithm 
(also known as Lloyd’s algorithm), and quantum computing can be 
leveraged to accelerate a single step of k-means221. Reference198 showed 
that a step for k-means can be performed by using a number of que-
ries that scales as O M k k ε( log( )/ ) , where M is the number of data 
points, N is the dimension of the vectors and ε is the error. Although a 
direct classical method requires O(kMN), the quantum solution is sub-
stantially better under plausible assumptions, such as that the number 
of queries made by the algorithm is independent of the number of 
features. Reference222 proposed q-means, which is the quantum equiv-
alent of a perturbed version of k-means called δ-k-means. The q-means 
algorithm has a running time that depends polylogarithmically on the 
number of data points. A noisy intermediate-scale quantum version 
of k-means clustering using quantum computing has been proposed223. 
Reference224 discussed a quantum version of expectation maximiza-
tion, a common tool used in unsupervised ML. Another version of 
k-means clustering has been developed225 on the basis of a quantum 
expectation-maximization algorithm for Gaussian mixture models.

Another clustering method that has achieved great success clas-
sically is spectral clustering226. However, it suffers from a fast-growing 
running time of O(N3), where N is the number of points in the data set. 
Reference227 used phase estimation and QAE for spectral clustering on 
quantum computers, and ref. 228 proposed another quantum algo-
rithm to perform spectral clustering. Reference229 developed quantum 
algorithms using the graph Laplacian for ML applications, includ-
ing spectral k-means clustering. More discussions on unsupervised 
quantum ML techniques can be found in refs. 230,231. A technique for 
using quantum annealing for combinatorial clustering was described 
in ref. 232. Reference233 proposed to reduce the clustering problem to 
an optimization problem and then solve it via a VQE combined with 
non-orthogonal qubit states.

Quantum methods for generative learning
Unsupervised generative learning is at the forefront of deep learning 
research234. The goal of generative learning is to model the probability 
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distribution of observed data and generate new samples accordingly. 
One of the most promising aspects of achieving potential quantum 
advantage lies in the sampling advantage of quantum computers, espe-
cially considering that many applications in finance require generating 
samples from complex distributions. Therefore, further investigations 
of generative quantum ML for finance are needed.

The QCBM235 directly exploits the inherent probabilistic inter-
pretation of quantum wave functions and represents a probability 
distribution using a quantum pure state instead of the thermal distri-
bution. Numerical simulations suggest that in the task of learning the 
distribution, QCBM at least matches the performance of the restricted 
Boltzmann machine and demonstrates superior performance as the 
model scales236. (A Boltzmann machine is an undirected probabilistic 
graphical model inspired by thermodynamics237.) QCBM was also used 
to model copulas238. Reference239 proposed separating the training and 
sampling stages and showed numerically that probability distribu-
tions can be trained and sampled efficiently, whereas SDEs can act as 
differential constraints on such trainable quantum models.

Bayesian networks are probabilistic graphical models237 repre-
senting random variables and conditional dependencies via a directed 
acyclic graph, in which each edge corresponds to a conditional depend-
ency, and each node corresponds to a unique random variable. Bayesian 
inference on this type of graphs has many applications, such as predic-
tion, anomaly detection, diagnostics, reasoning and decision-making 
with uncertainty. Although exact inference is #P-hard, a quadratic 
speedup in certain parameters can be obtained by using quantum 
techniques240. Mapping this problem to a quantum Bayesian network 
seems plausible as quantum mechanics naturally describes a proba-
bilistic distribution. Reference241 introduced the quantum Bayesian 
network as an analogue to classical Bayesian networks, and ref. 242 pro-
posed a procedure to design a quantum circuit to represent a generic 
discrete Bayesian network. Potential applications in finance include 
portfolio simulation243 and decision-making modelling244.

Classically, inference is usually performed by using MCMC 
methods to sample from the equilibrium distribution of the model 
(the Boltzmann distribution) (in chapter 16 of ref. 234). Because of 
the intractability of the partition function in the general Boltzmann 
machine, the graph structure is typically bipartite, resulting in a 
restricted Boltzmann machine245,246. Quantum Boltzmann machines 
have been implemented with quantum annealing247–249. In addi-
tion, a gate-based variational approach using variational quantum 
imaginary-time evolution has been designed250.

Generative adversarial networks (GANs) represent a powerful tool 
for classical ML: a generator tries to create statistics for data that mimic 
those of the real data set, whereas a discriminator tries to discriminate 
between the true and fake data. Reference251 introduced the notion of 
quantum GANs, in which the data consist of either quantum states or 
classical data, and the generator and discriminator are equipped with 
quantum information processors. The authors showed that when the 
data consist of samples of measurements made on high-dimensional 
spaces, quantum adversarial networks may exhibit an exponential 
advantage over classical adversarial networks. Quantum GAN has been 
used to learn and load random distribution and can facilitate financial 
derivative pricing43.

Quantum methods for feature extraction
Feature extraction techniques aim to preprocess raw training data 
to identify important components, transform the data to a more 
meaningful representation space or reduce dimension252. However, 

sometimes, this can result in modifying the data in such a way that it 
is not human-interpretable, which makes it difficult to use such tech-
niques in the highly regulated financial industry. Thus, for finance, it is 
important to find efficient, useful and explainable feature extraction 
methods. One particular simple algorithm is principal component 
analysis (PCA), which finds a low-dimensional representation of the 
data on a linear manifold. Various quantum versions of PCA have been 
proposed253–256, all of which encode principal components in quan-
tum superposition. Similar to most techniques that use QBLASs, it 
is particularly difficult to obtain useful classical information from 
the quantum output. However, one could feed the result to other 
quantum-linear-algebra-based ML models.

Interest in topological data analysis257, specifically persistent 
homology, has surged in the quantum community258. In a practical 
setting, the potential speedup over classical algorithms is believed to 
be at most polynomial for dense clique complexes259. In addition, vari-
ous quantum optimization heuristics could be used for combinatorial 
feature selection260–263, which means choosing a subset of the input 
features to use according to some measure of importance.

Quantum methods for reinforcement learning
Reinforcement learning (RL) is an area of ML that considers how agents 
ought to take actions in an environment to maximize their reward264. It 
has been applied to many financial applications, including pricing265 
and hedging266 of contingent claims, portfolio allocation267, automated 
trading under market frictions268,269, market making270, asset liability 
management271 and optimization of tax consequences272. There has 
been a line of work investigating applying quantum algorithms to RL 
when one has access to state or actions spaces, for example, access to 
Markov decision processes through quantum oracles. Reference273 pro-
posed using Grover’s algorithm to amplify the probability of observing 
actions that result in a positive reward. In addition, the authors showed 
that the approach makes a good trade-off between exploration and 
exploitation using the probability amplitude and can speed up learning 
through quantum parallelism. Additionally, ref. 274 explored ways to 
apply QMCI and gradient estimation to quantize the policy gradient 
method, given access to a Markov decision process through quantum 
oracles. Reference275 demonstrated that the computational complex-
ity of a particular model, projective simulation, can be quadratically 
reduced. In this scenario, the agent only requires quantum access to 
an internal memory that it builds by interacting with the environment.

Cutting-edge research in classical RL focuses on the approximate 
setting, in which deep neural networks are used to handle state and 
action spaces that would otherwise be intractable with tabular RL 
methods264. The benefits from quantum algorithms — for instance, 
with QNNs — in such a scenario appear to be unclear, similarly to when 
variational quantum models are used for supervised or unsupervised 
models. However, there has been some work in this direction276–282.

Dequantized algorithms
The framework for dequantizing QBLAS-based algorithms started 
with the breakthrough result in Ref. 283. Dequantization results in a 
classical randomized algorithm that achieves a dimension dependence 
that is competitive with the best quantum algorithm when provided 
sampling access to a certain data structure containing low-rank data. 
These algorithms typically have very poor error dependence. Following 
Ref. 283, various sublinear classical algorithms have been developed 
for solving low-rank SDPs, performing PCA, clustering and more284. 
These quantum-inspired algorithms can potentially provide benefits 
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when high precision is not required and could be applied to financial 
applications285. Despite these algorithms refuting much of the originally 
claimed exponential quantum speedups for ML, they could potentially 
inspire useful algorithms for high-dimensional financial problems.

Outlook
Quantum computers are expected to surpass the computational capa-
bilities of classical computers and provide a speedup for real-world 
applications. As outlined in this Review, the financial industry deals with 
various computationally challenging problems for which many appli-
cable quantum algorithms exist. Promising provable quantum advan-
tages have been discovered in certain black-box settings, such as MCI. 
However, it is still unclear whether any of these proposed approaches 
for stochastic modelling, optimization and ML can be turned into an 
end-to-end quantum advantage on practical problems. In finance, 
computational time and accuracy can often directly translate to the 
profit and loss of the business for which the problems are being solved, 
insomuch that any actual wall-clock speedup and associated model 
performance improvement that new forms of computing could bring 
can have a tremendous impact on the financial industry. For example, 
fast and accurate evaluation of the risk metrics in derivatives trading  
is crucial in effectively hedging the risks especially under volatile mar-
ket conditions. Fraud detection is apparently another time-sensitive use 
case in finance, as early and accurate detection of fraudulent activities 
can avoid potentially significant monetary loss and reputational dam-
age to a financial institute. As a result, the financial industry is perfectly 
positioned to be an early adopter and take full advantage of quantum 
computing in the field of computational finance.

We close with a discussion on existing quantum hardware and archi-
tecture challenges that, if solved, could benefit quantum algorithms 
for financial applications. As mentioned earlier, state preparation, 
specifically the loading of quantum states encoding classical prob-
ability distributions, is a common task required in quantum algorithms 
for stochastic modelling. One potential hardware feature that could 
reduce state preparation complexity is native multicontrolled gates, 
whose implementations have been proposed for various architectures 
including cold atoms286, trapped ions287 and superconducting qubits288.

Similarly, variational quantum algorithms may also benefit from 
the access to native multiqubit gates. In particular, when solving 
higher-order combinatorial optimization problems (for example, 
problems on hypergraphs167), variational quantum optimization algo-
rithms, such as QAOA, often require multibody interactions, which can 
be encoded as parameterized multiqubit entangling gates. Therefore, 
having native access to such multiqubit gates would help reduce the 
circuit complexity of these algorithms. In addition to multiqubit gates, 
a larger class of native two-qubit interactions could also enable one to 
more efficiently implement QAOA mixers for constrained problems, 
such as the Hamming-weight-preserving XY-mixers145,153. As mentioned 
in the ‘Optimization’ section, financial problems are typically highly 
constrained. Moreover, having access to various native entangling 
gates may also motivate the design and implementation of more 
efficient circuits for quantum ML182.

Coherent quantum arithmetic could also be beneficial to quantum 
algorithms for finance. Specifically, quantum algorithms for stochas-
tic modelling and realizations of oracles for quantum optimization 
algorithms will most likely require a significant amount of reversible 
arithmetic. Consequently, qubit-count requirements for these algo-
rithms could potentially be reduced with the development of efficient 
quantum floating-point arithmetic289.

Another hardware feature that could drastically improve the feasi-
bility for quantum algorithms for finance is quantum memory. Most of 
the algorithms for continuous optimization and PDE solving can work 
with a classical-write, quantum-read memory90. However, it has been 
recently highlighted that existing quantum memory technologies 
have fundamental limitations that make the realization of low-cost 
and scalable quantum memory without active error correction highly 
challenging290. Therefore, new quantum memory architectures are 
likely needed to overcome these limitations.

Additionally, the operation clock rate of the current quantum 
hardware is much slower compared with classical computers; this is 
also a limiting factor in the practical usability of many quantum algo-
rithms. For example, quantum variational algorithms for ML require 
a large number of high-quality circuit evaluations to estimate gra-
dients through sampling. Therefore, improving the gate operation 
speed in quantum computers would reduce the overhead in quantum  
algorithms, hence potentially bringing the advantage over classi
cal algorithms to a wider range of problem sizes as opposed to only in 
the asymptotic regime. It is commonly observed that qubits encoded 
in ‘natural atoms’, such as trapped ions, produce high-fidelity gate 
operations, but are typically slow. By contrast, ‘artificial atoms’ such as 
superconducting qubits are known to be fast, but low fidelity. Combin-
ing these aspects is critical to make effective use of near-term quantum 
devices for financial applications. Moreover, current quantum error 
correction techniques introduce a significant additional overhead that 
potentially negates certain quantum speedups for finance28. Thus, 
continued research into improving error correction and quantum 
architecture is also critical in realizing commercial applications of 
quantum computing in finance.

We hope that this Review has highlighted that in addition to 
challenges in hardware technologies there are still a lot of interest-
ing quantum-algorithmic challenges to overcome to bring about a 
real-world quantum advantage. As quantum hardware advances, we 
expect to be able to benchmark more complex quantum algorithms, 
especially heuristic ones, on interesting problems.
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